Транзисторный усилитель класса А своими руками. Унч класса а своими руками


Транзисторный усилитель класса А своими руками / Хабр

На Хабре уже были публикации о DIY-ламповых усилителях, которые было очень интересно читать. Спору нет, звук у них чудесный, но для повседневного использования проще использовать устройство на транзисторах. Транзисторы удобнее, поскольку не требуют прогрева перед работой и долговечнее. Да и не каждый рискнёт начинать ламповую сагу с анодными потенциалами под 400 В, а трансформаторы под транзисторные пару десятков вольт намного безопаснее и просто доступнее.

В качестве схемы для воспроизведения я выбрал схему от John Linsley Hood 1969 года, взяв авторские параметры в расчёте на импеданс своих колонок 8 Ом.

Классическая схема от британского инженера, опубликованная почти 50 лет назад, до сих пор является одной из самых воспроизводимых и собирает о себе исключительно положительные отзывы. Этому есть множество объяснений: — минимальное количество элементов упрощает монтаж. Также считается, что чем проще конструкция, тем лучше звук; — несмотря на то, что выходных транзисторов два, их не надо перебирать в комплементарные пары; — выходных 10 Ватт с запасом хватает для обычных человеческих жилищ, а входная чувствительность 0.5-1 Вольт очень хорошо согласуется с выходом большинства звуковых карт или проигрывателей; — класс А — он и в Африке класс А, если мы говорим о хорошем звучании. О сравнении с другими классами будет чуть ниже.

Внутренний дизайн
Усилитель начинается с питания. Разделение двух каналов для стерео правильнее всего вести уже с двух разных трансформаторов, но я ограничился одним трансформатором с двумя вторичными обмотками. После этих обмоток каждый канал существует сам по себе, поэтому надо не забывать умножать на два всё упомянутое снизу. На макетке делаем мосты на диодах Шоттки для выпрямителя.

Можно и на обычных диодах или даже готовых мостах, но тогда их необходимо шунтировать конденсаторами, да и падение напряжения на них больше. После мостов идут CRC-фильтры из двух конденсаторов по 33000 мкф и между ними резистор 0.75 Ом. Если взять меньше и ёмкость, и резистор, то CRC-фильтр станет дешевле и меньше греться, но увеличатся пульсации, что не комильфо. Данные параметры, имхо, являются разумными с точки зрения цена-эффект. Резистор в фильтр нужен мощный цементный, при токе покоя до 2А он будет рассеивать 3 Вт тепла, поэтому лучше взять с запасом на 5-10 Вт. Остальным резисторам в схеме мощности 2 Вт будет вполне достаточно.

Далее переходим к самой плате усилителя. В интернет-магазинах продаётся куча готовых китов, однако не меньше и жалоб на качество китайских компонентов или безграмотных разводок на платах. Поэтому лучше самому, под свою же «рассыпуху». Я сделал оба канала на единой макетке, чтобы потом прикрепить её ко дну корпуса. Запуск с тестовыми элементами:

Всё, кроме выходных транзисторов Tr1/Tr2, находится на самой плате. Выходные транзисторы монтируются на радиаторах, об этом чуть ниже. К авторской схеме из оригинальной статьи нужно сделать такие ремарки:

— не всё нужно сразу впаивать намертво. Резисторы R1, R2 и R6 лучше сначала поставить подстроечными, после всех регулировок выпаять, измерить их сопротивление и припаять окончательные постоянные резисторы с аналогичным сопротивлением. Настройка сводится к следующим операциям. Сначала с помощью R6 выставляется, чтобы напряжение между X и нулём было ровно половиной от напряжения +V и нулём. В одном из каналов мне не хватило 100 кОм, так что лучше брать эти подстроечники с запасом. Затем с помощью R1 и R2 (сохраняя их примерное соотношение!) выставляется ток покоя – ставим тестер на измерение постоянного тока и измеряем этот самый ток в точке входа плюса питания. Мне пришлось ощутимо снизить сопротивление обоих резисторов для получения нужного тока покоя. Ток покоя усилителя в классе А максимальный и по сути, в отсутствие входного сигнала, весь уходит в тепловую энергию. Для 8-омных колонок этот ток, по рекомендации автора, должен быть 1.2 А при напряжении 27 Вольт, что означает 32.4 Ватта тепла на каждый канал. Поскольку выставление тока может занять несколько минут, то выходные транзисторы должны быть уже на охлаждающих радиаторах, иначе они быстро перегреются и умрут. Ибо греются в основном они.

— не исключено, что в порядке эксперимента захочется сравнить звучание разных транзисторов, поэтому для них тоже можно оставить возможность удобной замены. Я попробовал на входе 2N3906, КТ361 и BC557C, была небольшая разница в пользу последнего. В предвыходных пробовались КТ630, BD139 и КТ801, остановился на импортных. Хотя все вышеперечисленные транзисторы очень хороши, и разница может быть скорее субъективной. На выходе я поставил сразу 2N3055 (ST Microelectronics), поскольку они нравятся многим.

— при регулировке и занижении сопротивления усилителя может вырасти частота среза НЧ, поэтому для конденсатора на входе лучше использовать не 0.5 мкф, а 1 или даже 2 мкф в полимерной плёнке. По Сети ещё гуляет русская картинка-схема «Ультралинейный усилитель класса А», где этот конденсатор вообще предложен как 0.1 мкф, что чревато срезом всех басов под 90 Гц:

— пишут, что эта схема не склонна к самовозбуждению, но на всякий случай между точкой Х и землёй ставится цепь Цобеля: R 10 Ом + С 0.1 мкф. — предохранители, их можно и нужно ставить как на трансформатор, так и на силовой вход схемы. — очень уместным будет использование термопасты для максимального контакта между транзистором и радиатором.

Слесарно-столярное
Теперь о традиционно самой сложной части в DIY — корпусе. Габариты корпуса задаются радиаторами, а они в классе А должны быть большими, помним про 30 Ватт тепла с каждой стороны. Сначала я недоучёл эту мощность и сделал корпус со средненькими радиаторами 800см² на канал. Однако при выставленном токе покоя 1.2А они нагрелись до 100°С уже за 5 минут, и стало ясно, что нужно нечто помощнее. То есть нужно либо ставить радиаторы побольше, либо использовать кулеры. Делать квадрокоптер мне не хотелось, поэтому были куплены гигантские красавцы HS 135-250 площадью 2500 см² на каждый транзистор. Как показала практика, такая мера оказалась немного избыточной, зато теперь усилитель спокойно можно трогать руками – температура равна лишь 40°С даже в режиме покоя. Некоторой проблемой стало сверление отверстий в радиаторах под крепления и транзисторы – изначально купленные китайские свёрла по металлу сверлили крайне медленно, на каждую дырку уходило бы не менее получаса. На помощь пришли кобальтовые свёрла с углом заточки 135° от известного немецкого производителя — каждое отверстие проходится за несколько секунд!

Сам корпус я сделал из оргстекла. Заказываем у стекольщиков сразу нарезанные прямоугольники, выполняем в них необходимые отверстия для креплений и красим с обратной стороны чёрной краской.

Покрашенное с обратной стороны оргстекло смотрится очень красиво. Теперь остаётся только всё собрать и наслаждаться музы… ах да, при окончательной сборке ещё важно для минимизации фона правильно развести землю. Как было выяснено за десятилетия до нас, C3 нужно присоединять к сигнальной земле, т.е. к минусу входа-входа, а все остальные минуса можно отправить на «звезду» возле конденсаторов фильтра. Если всё сделано правильно, то никакого фона не расслышать, даже если на максимальной громкости поднести ухо к колонке. Ещё одна «земляная» особенность, которая характерна для звуковых карт, не развязанных с компьютером гальванически – это помехи с материнки, которые могут пролезть через USB и RCA. Судя по интернету, проблема встречается часто: в колонках можно услышать звуки работы HDD, принтера, мышки и фон БП системника. В таком случае проще всего разорвать земляную петлю, заклеив изолентой заземление на вилке усилителя. Опасаться тут нечего, т.к. останется второй контур заземления через компьютер.

Регулятор громкости на усилителе я не стал делать, поскольку достать какой-нибудь качественный ALPS не удалось, а шуршание китайских потенциометров мне не понравилось. Вместо него был установлен обычный резистор 47 кОм между «землёй» и «сигналом» входа. Тем более регулятор у внешней звуковой карты всегда под рукой, да и в каждой программе тоже есть ползунок. Регулятора громкости нет только у винилового проигрывателя, поэтому для его прослушивания я приделал внешний потенциометр к соединительному кабелю.

Я угадаю этот контейнер за 5 секунд...
Наконец, можно приступать к прослушиванию. В качестве источника звука используется Foobar2000 → ASIO → внешняя Asus Xonar U7. Колонки Microlab Pro3. Главное достоинство этих колонок — это отдельный блок собственного усилителя на микросхеме LM4766, который можно сразу убрать куда-то подальше. Намного интереснее с этой акустикой звучали усилок от мини-системы Panasonic с гордой надписью Hi-Fi или усилитель советского проигрывателя Вега-109. Оба вышеупомянутых аппарата работают в классе АВ. Представленный в статье JLH переиграл всех вышеперечисленных товарищей в одну калитку, по результатам слепого теста для 3 человек. Хотя разницу было слышно невооружённым ухом и без всяких тестов – звук явно детальнее и прозрачнее. Весьма легко, например, услышать различие между MP3 256kbps и FLAC. Раньше я думал, что эффект lossless больше как плацебо, но теперь мнение изменилось. Аналогичным образом гораздо приятнее стало слушать нескомпрессованые от loudness war файлы — dynamic range меньше 5 Дб вообще не айс. Линсли-Худ стоит затрат времени и денег, ибо аналогичный брендовый усилок будет стоить намного дороже.
Материальные затраты
Трансформатор 2200 р. Выходные транзисторы (6 шт. с запасом) 900 р. Конденсаторы фильтра (4 шт) 2700 р. «Рассыпуха» (резисторы, мелкие конденсаторы и транзисторы, диоды) ~ 2000 р. Радиаторы 1800 р. Оргстекло 650 р. Краска 250 р. Разъёмы 600 р. Платы, провода, серебряный припой и пр. ~1000 р. ИТОГО ~12100 р.

habr.com

Усилитель Класса А усилитель JLH Джона Ли Худа John Linsley Hood усилители класса А

Новое - это хорошо забытое старое

 

Последние несколько лет наблюдается волна интереса к знаменитому усилителю Джона Линсли Худа (John Linsley-Hood). Повышенный интерес к JLH обусловлен тем, что интернет-магазины и аукционы Hi-End начали предлагать множество вариаций этого усилителя в готовом виде и в виде комплектов для домашней сборки. На многочисленных форумах по электронике и звукотехнике проводятся бурные обсуждения предложенной более 40 лет назад схемы и способов ее улучшения применительно к сегодняшней компонентной базе.

Нередко лейбл «JLH» навешивают на конструкции, ничего общего с легендарным оригинальным усилителем не имеющие. Предлагаю разобраться в достоинствах и недостатках этого усилителя класса А и его поразительно изящной, и простой схемотехнике. Усилитель этого талантливого инженера из Англии, созданный почти 50 лет назад дожил до сегодняшнего дня пережив несколько реинкарнаций, и сегодня, в конце 2016 года он, по-прежнему будоражит воображение настоящих аудиофилов.

Первая публикация схемы появилась в журнале «Wireless World» в 1959 году. Перевод основной идеи схемы John Linsley-Hood:

 

«В последнее время издания для любителей качественного звучания опубликовали множество схем усилителей на транзисторах, большинство из которых малопригодны для повторения ввиду чрезвычайной сложности для повторения среднестатистическим радиолюбителем. Мощность предлагаемых к повторению транзисторных усилителей как правило многократно завышена, что совершенно не требуется для комфортного прослушивания музыки в обычной комнате. Повышенная мощность тянет за собой необходимость применения дорогостоящих транзисторов и мощных блоков питания. До эры появления транзисторов огромной популярностью пользовались ламповые усилители фирм Mullard, Leak и другие обладающие выходной мощностью до 10-15 Ватт на канал, которой с лихвой хватало для воспроизведения практически любой музыки в условиях реальной жилой комнаты. Уровень громкости с колонками средней чувствительности и такой выходной мощностью усилителя в стерео-режиме получался даже больше необходимого. Инженеру Джону Линсли Худу пришла идея разработать простой для повторения, но максимально качественный усилитель класса А с разумной выходной мощностью и минимально возможными искажениями. Что он блистательно и осуществил»

 

Один из приверженцев максимально простых и линейных Hi-End усилителей класса «А» и по совместительству владелец фирмы «Pass Aleph» Нельсон Пасс (Nelson Pass) написал в своей статье, что усилитель Д. Ли. Худа даже спустя 40 лет восхищает великолепным качеством звучания при предельно простотой конструкции.

 

Искажения и выходная мощность

 

В период 1947-1949 годов патриарх усилителе строения David Theodore Nelson Williamson написал в серии статей, опубликованных в том же журнале «Wireless World», что величина искажений для высококачественного звуковоспроизведения не должна превышать 0,1%. Основные искажения в ламповом усилителе вносит выходной трансформатор, а поскольку транзисторные конструкции могут обойтись без этого нелинейного элемента, то требования к транзисторным схемам можно ужесточить. Можно считать допустимыми не более 0,05% искажений, вносимых транзисторным усилителем при полной выходной мощности в полосе частот от 30 Гц до 20 кГц.

В связи с «гонкой мощностей» когда во главу угла ставились параметры усилителей, а их реальное звучание отодвигалось на второй план, подавляющее число разработок и воплощение их в готовых конструкциях было сосредоточено на усилителях класса «В» или «АВ». Потенциальный клиент читал отзывы об усилителях в аудио прессе и его глаза невольно наталкивались на эту «гонку параметров». На первое место ставились преимущества усилителей с характеристиками, изобилующие многими нулями: 0,01 – 0,001 % искажений, 100 – 200 – 300 Ватт выходной мощности, а не редко и больше. Эти цифры объявлялись «главными достоинствами» усилителей, а их цена напрямую зависела от количества нулей. Потенциальный покупатель усилителя намеренно ставился перед искусственно навязанным выбором, таким же, как в случае с автомобилями и рекламируемыми «преимуществами» с упором на мощность двигателя и максимальную скорость. В отличие от автомобиля, в усилителях выходная мощность и уровень искажений к реальному качеству звучания имеют очень опосредованное отношение. На звук гораздо большее влияние оказывает грамотно выбранная схемотехника, режимы работы каждого каскада и качество деталей.

 

По простому о классах «А» и «АВ»

 

Усилители класса А получили малое распространение в первую очередь из-за низкого КПД. При «гонке параметров» когда рынок требует от усилителя получение выходных мощностей 50 – 100 – 200 и более Ватт в канал применять режим класса А крайне невыгодное и неблагодарное мероприятие. Потребляемую мощность с этим режимом нужно смело умножить на три или четыре, и вся эта мощность, в отличие от полезной не идет на динамики, а преобразуется в банальное тепло. Соответственно для усилителя, работающего в классе А требуется блок питания в три - четыре раза мощнее аналогичного, работающего в классе АВ. Плюс, нужны огромные радиаторы, которые должны рассеять излишнее тепло. Себестоимость усилителя довольно сильно зависит от мощности блока питания и размеров радиаторов выходных транзисторов. В итоге усилители класса «А» получаются намного более дорогими и «горячими» в прямом смысле этого слова, по сравнению с аналогичными по мощности усилителями, работающими в классе АВ.

Вот этот маленький КПД усилителей класса А помноженный на «Горячесть» и высокую по сравнению с моделями класса «АВ» стоимость и предопределил малую распространенность этих на самом деле – замечательных конструкций.

Если абстрагироваться от желания получить сто ваттные мощности на выходе и смириться с повышенным тепловыделением, усилители класса А по звучанию уложат «на обе лопатки» абсолютно все другие модели усилителей с их техническими изысками. Как правило усилители класса А намного более просты схемотехнически, чем их собратья, работающие в других режимах. Режим работы А пришел из ламповых схем, которые отличаются от транзисторных намного более «коротким» трактом и малым количеством деталей. Платой за кажущуюся простоту является необходимость тщательного подбора каждого элемента усилителя класса А и высокие требования к качеству комплектующих.

Благодаря простой конструкции и малому количеству каскадов, усилитель класса А поддается точной настройке путем оптимизации работы каждого каскада и наилучшему согласованию каскадов между собой. В Усилителях класса АВ с их десятками и сотнями последовательно включенных звеньев, индивидуальная настройка каждого каскада в принципе невозможна. Для обеспечения приемлемых параметров в них приходится вводить глубокую отрицательную обратную связь, которая позволяя достичь заданных характеристик, при этом начисто «убивает» звук.

 

Особенности схемотехники JLH

 

Основная идея John Linsley-Hood, построение максимально простого усилителя, все каскады которого работают в классе А. В классе А транзисторы работают на максимально линейных участках своих характеристик, и имеют практически постоянную, хоть и немного повышенную температуру, при которой их параметры практически не «плывут». В классе А можно достичь очень хорошей симметрии плеч и избавиться от так называемых «коммутационных» искажений, ведь в классе А транзисторы в отличие от класса В и АВ вообще не выключаются.

Каскады класса А в однотактном включении с нагрузкой – резистором самые неэффективные по КПД в сравнении со всеми остальными вариантами включения транзисторов. Зато они самые линейные и самые «музыкальные». Путем замены резистора на дроссель или трансформатор можно повысить КПД и легко согласовать простейший каскад на транзисторе с практически любым следующим каскадом. Но это «палка о двух концах». Применив дроссель или трансформатор, мы получаем максимально качественно «звучащий» каскад, но при этом имеем в конструкции сложное, тяжелое и дорогостоящее моточное изделие.

Для упрощения и удешевления конструкции Джон Линсли Худ применил двухтактный выходной каскад с возбуждением противофазным сигналом, изображенный на Рис.1. Оптимальным решением здесь является применение каскада на транзисторе VT1 обратной проводимости (n-p-n), который для выходных транзисторов является фазоинвертором и управляет обоими плечами (верхним и нижним), собранными на транзисторах VT2 и VT3.

За счёт компенсации взаимной нелинейности характеристик транзисторов, это включение даёт низкие искажения даже без применения отрицательной обратной связи. Как бонус, низкое выходное сопротивление каскада на VT1 хорошо согласуется с довольно высоким входным сопротивлением каскадов на VT2, VT3.

 

JLH-1969 усилитель

Упрощенная схема усилителя JLH показана на Рис.2

 

Входной сигнал подается на базу транзистора VT1. С его коллектора инвертированный и усиленный сигнал поступает на базу транзистора VT2. Транзистор VT2 усиливает входной сигнал и формирует противофазные сигналы для выполненного на транзисторах VT3 и VT4 выходного каскада. Нижний выходной транзистор VT3 включен по схеме с общим эмиттером и усиливает как ток, так и напряжение. Верхний выходной транзистор VT4 включен по схеме с общим коллектором и усиливает только ток (это классический эмиттерный повторитель).

Резисторы R4-R5 задают напряжение смещения для транзистора VT1, резистор R3 формирует смещение выходного каскада. Резисторы R1-R2 задают глубину отрицательной обратной связи по току. Транзистор VT2 является сердцем этой схемы и применен здесь для управления выходным каскадом - элегантно и просто.

Нельсон Пасс являясь приверженцем максимально простых схем и коротких трактов, работающих в классе «А» обошёл стороной одну особенность представленной топологии. В своих конструкциях он применяет исключительно полевые транзисторы, которые управляются напряжением на затворе, в отличие от примененных Джоном Ли Худом биполярных транзисторов, управляемых током базы. И если в далеком 1959 году мощных серийных полевых транзисторов попросту не существовало и Джона Ли Худа можно понять, то Нельсона Паса понять сложно, по какой именно причине он не применяет в своих усилителях биполярные транзисторы.  Путем обращения к «коллективному» разуму армии любителей, повторивших конструкции как Нельсона Пасса, так и Джона Ли худа было «вычислено», что с полевыми транзисторами гораздо легче работать. Они менее капризны и для достижения искомых параметров не требуют вокруг себя «танцев с бубнами» (многомесячных настроек) как биполярные. Но тот же «коллективный разум» говорит о том, что биполярные транзисторы звучат все-таки лучше полевых… хотя это как раз не факт.

Выходной ток предыдущего каскада усилителя Джона Ли Худа является входным током для последующего. Ток коллектора транзистора VT1 является управляющим для транзистора VT2 и втекает в его базу. В других каскадах все происходит аналогично. Резистор R3 является источником стабильного тока и изменение тока коллектора транзистора VT2 полностью отражается на токе базы транзистора VT4. Такая топология построения «двойки» транзисторов делает условия их взаимного управления идеальными.

Вся идеология построения усилителя Джона Ли Худа подчиняется идее минимализма, в ней нет ничего лишнего…

Дизайн усилителя JLH родился в то время, когда эра усилителей на лампах близилась к своему завершению, транзисторы быстро вытеснили электровакуумные приборы практически из всех областей электроники. Не избежала этой участи и звуковая техника. Инженеры начали проектировать транзисторные усилители с оглядкой в первую очередь на параметры: высокую выходную мощность и предельно низкие искажения. Их разработки в большинстве своем были крайне сложны и отличались от ламповых схем применением многочисленных и глубоких обратных связей. А это, как в последствии выяснилось, качества звуку совсем не добавило.

За прошедшие 47 лет прогресс в электронной промышленности ушел далеко вперед. А вот про технику для воспроизведения звука такого сказать нельзя. За почти сто лет с момента изобретения электронного усилительного прибора – лампы, а за ней транзистора, вдруг выяснилось, что лучшее звучание имеют простые схемотехнические решения, известные уже много лет. И никакими современными технологическими изысками качество звучания почему-то не улучшается.

 

P.S. Усилитель JLH в отличие от конкурентов, воспроизводит почти «живую» музыку. Данный усилитель имеется в наличие. Так же Вы можете заказать аппарат в индивидуальной комплектации. Мощность усилителя JLH может варьироваться от 5 до 150 Вт на канал в классе А.

 

Ссылки по теме

 

aovox.com

Усилитель 2x10 ватт класс A своими руками

   Еще одна несимметричная схема усилителя мощности низкой частоты. Это одна из известнейших схем ДЖОНА ЛИНСЛИ-ХУДА. Схема является ультралинейным усилителем чистого А класса. Схема способна развивать до 10 ватт чистой звуковой мощности, но при этом потребляет 40 -50 ватт. Как известно усилители класса А имеют очень низкий КПД, большая часть напряжения уходит в виде нагрева выходного каскада. Схема полностью построена на импортных компонентах, хотя можно использовать отечественные аналоги.

   Усилители класса "А" обладают высоким качеством звучания, выходной сигнал не искажается и полностью повторяет форму входного сигнала, но из - за пониженного КПД не советуется делать усилители с мощностью более 20-30 ватт. Для более мощных аудиосистем советуется собрать усилители класса АВ. 

Усилитель 2x10 ватт класс A - своими руками

   В данном случае повторена схема знаменитого британског конструктора УМЗЧ J. Linsley Hood. Усилитель питается от однополярного напряжения. Диапазон входных напряжений достаточно широкий - от 8 до 45 вольт. В выходном каскаде можно использовать отечественные транзисторы КТ 803А, КТ819, КТ805. Для повышения мощности можно использовать больь мощные транзисторы - КТ827, КТ825. 

Делаем транзисторный Усилитель 2x10 ватт

   В схеме нужно использовать резисторы с мощностью 1-4 ватт, на каждом резисторе наблюдается тепловыделение (дополнительные тепловые потери в мощности). 

Усилитель звука для дома 2 по 10 ватт

   Сразу были собраны две полностью одинаковые схемы этого усилителя. Платы ничем не отличаются друг от друга. Питается усилители от одного мощного трансформатора на 200 ватт (работает с большим запасом мощности). Для каждого канала намотана отдельная обмотка, с диосным выпрямителем и блоком фильтров. В схеме УМЗЧ, ТР4 может быть заменен отечественным КТ361 или КТ3107, ТР3 - КТ801, КТ815, КТ817 или на любые другие аналогичные.

Сразу были собраны две полностью одинаковые схемы этого усилителя

   Хочу сразу предупредить, что автор схемы не советует делать замены компонентов, поскольку на качество звука это конечно повлияет, может не на слух, но выходная осциллограмма поменяет форму или же будут помехи в полупериодах.

Понравилась схема - лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

amplif.ru

Качественный усилитель звука своими руками

Эта схема усилителя звука была создана всеми любимым британским инженером (электронщик-звуковик) Линсли-Худом. Сам усилитель собран всего на 4-х транзисторах. С виду — обыкновенная схема усилителя НЧ, но это лишь с первого взгляда. Опытный радиолюбитель сразу поймет, что выходной каскад усилителя работает в классе А. Гениально то, что просто и эта схема тому доказательство. Это сверхлинейная схема, где форма выходного сигнала не изменяется, то, есть на выходе мы получаем ту же форму сигнала, что на входе, но уже усиленный. Схема более известна под названием JLH — ультралинейный усилитель класса А, и сегодня я решил представить ее вам, хотя схема далеко не новая. Данный усилитель звука, своими руками собрать может любой рядовой радиолюбитель, благодаря отсутствию в конструкции микросхем, делающей его более доступным.

Как сделать усилитель для колонок

Схема усилителя звука

В моем случае использовались только отечественные транзисторы, поскольку с импортными напряг, да и стандартные транзисторы схемы, найти нелегко. Выходной каскад построен на мощных отечественных транзисторах серии КТ803 — именно с ними звук кажется лучше. Для раскачки выходного каскада использован транзистор средней мощности серии КТ801 (удалось найти с трудом). Все транзисторы можно заменить на другие (в выходном каскаде можно использовать КТ805 или 819). Замены не критичны.

Совет: кто решит попробовать на «вкус» этот самодельный усилитель звука — используйте германиевые транзисторы, они лучше звучат (ИМХО). Было создано несколько версий этого усилителя, все они звучат… божественно, других слов не могу найти.

Мощность представленной схемы не более 15 ватт (плюс минус), ток потребления 2 Ампер (иногда чуть больше). Транзисторы выходного каскада будут греться даже без подачи сигнала на вход усилителя. Странное явление, не правда ли? Но для усилителей класса. А, это вполне нормальное явление, большой ток покоя — визитная карточка буквально всех известных схем этого класса.

В ролике представлена работа самого усилителя, подключенного к колонкам. Обратите внимание, что ролик снят на мобильный телефон, но о качестве звука можно судить и так. Для проверки любого усилителя стоит лишь послушать всего одно мелодию — Бетховен «К Элизе». После включения становится ясно, что за усилитель перед вами.

90% микросхемных усилителей не выдержат тест, звук будет «обломанным» могут наблюдаться хрипы и искажения при высоких частотах. Но вышесказанное не касается схемы Джона Линсли, ультралинейность схемы позволяет полностью повторить форму входного сигнала, этим получая только чистое усиление и синусоиду на выходе.

В моем случае схема усилителя звука была реализована на макетной плате, пока нет возможности собрать второй канал, но в будущем обязательно сделаю и помещу все в корпус.

all-he.ru

Простой усилитель мощности класса АВ своими руками. « схемопедия

Немного подробнее про характеристики усилителя.

2 канала по 38 Ватт на нагрузке 8Ом (как раз на фото)

Соотношение сигнал/шум >92дБ по даташиту.

Коэффициент гармонических искажений 0,03%

Полоса пропускания от 10Гц до 100 кГц.

На осциллографе синус не уменьшается на 96кГц ни сколько. Дальше посмотреть не позволяет мой аудио интерфейс E-MU, т.к. его максимальная частота дискретизации 192кГц. Да и этого диапазона ни к чему. Будем считать верхнюю граничную частоту в примерно 100кГц. Как-то так. Нижняя граничная частота определяется входными конденсаторами.

Искажение типа «ступенька», присущее усилителям класса АВ, (за что их часто ругают) на осциллографе разглядеть не удалось, а на слух и тем более. Микросхемы достаточно качественные.

Выходное напряжение усилителя 18,5В (действующее значение) без ограничения синуса на 1кГц. Это нам даёт около 43 Ватт на канал. Что сопоставимо с данными даташита (38 Ватт). Поэтому думаю, что К гармоник – не хуже чем по даташиту, к сожалению замерить его нет технической возможности в данное время, но я думаю, что он не отличается от указанного.

При включении никаких щелчков. В микросхеме есть своя защита. Нет ни фона ни даже шипения никакого. Даже не понятно, включен усилитель или нет до того, как ни заиграет музыка.

В целом я остался очень доволен.

Теперь нужно думать над следующим проектом. Пока не решил, что это будет. Возможно полный усилитель на транзисторах с селектором входов, предусилителем с регулятором тембра, тонкомпенсированной регулировкой громкости, спектральным индикатором сигнала и все это в одном корпусе! Возможно, цап для этого усилителя на микросхеме AK4495seq, который я уже собирал своему школьному другу. Надо будет только добавить в него усилитель для наушников. Цап очень хорошо себя показал.

http://pikabu.ru/story/prostoy_usilitel_moshchnosti_klassa_av_svoimi_rukami_dlinnopost_mnogo_foto_4952997

shemopedia.ru

Усилитель мощности в классе А со сверхбыстродействующей ОООС / Stereo.ru

Увлекаться аудиотехникой и слушать музыку я начал очень давно, с конца 80-х годов и продолжительное время был твердо убежден, что любой УМ с лейблом Sony, Technics, Revox и т.д. намного лучше отечественных усилителей, а самоделок – тем более, так как у западных брендов и технологии, и самые качественные детали, и опыт.

Все изменилось после статьи А.М. Лихницкого в журнале Аудиомагазин № 4(9) 1996, где рассказывалось о разработке и внедрении в производство в 70-е годы усилителя Бриг-001, автором которого он является. Волею случая, спустя небольшой промежуток времени, неисправный Бриг-001 из первых выпусков попал мне в руки. Используя только оригинальные отечественные детали 70-х - 80-х годов, привел этот УМ в первоначальное состояние, чтобы можно было оценить его звуковые способности как можно более достоверно.

Подключение усилителя Бриг-001 вместо Technics SU-A700 домашней аудиосистемы повергло меня в шок – Бриг звучал намного лучше, хотя параметры имел скромнее и был старше лет на 20. Именно в этот момент возникла идея сделать усилитель своими руками, способный заменить штатный в аудиосистеме, что и было сделано в 1998 году, преимущественно, на отечественной элементной базе военной приемки. Новый аппарат не оставлял шансов на сравнительных прослушиваниях уже и более именитым усилителям, типа NAD и Rotel средних моделей линейки и был вполне убедителен даже в сравнении с их более старшими собратьями. Дальнейшее развитие проект получил в 2000-м году, в виде двухблочного УМ по той же схеме, но с новым конструктивом и увеличенной энергоемкостью блока питания. Сравнивался он уже с транзисторными и ламповыми усилителями из ценовой категории до нескольких тысяч долларов США, причем, во многих случаях превосходил их по качеству звучания. Тут я понял еще одну вещь – конструкция усилителя решает почти все.

Анализируя результаты прослушиваний, особенно с участием тех усилителей, которые звучали лучше моего двухблочного УМ, я пришел к выводу, что чаще на высоте оказывались либо хорошие ламповые конструкции, либо транзисторные без общей ООС. Были среди них и УМ с глубокой ОООС, в спецификациях которых нередко красовались очень высокие значения скорости нарастания выходного напряжения – 200 В/мкс и выше. Как правило, эти аппараты были дорогие, а их схемотехника отсутствовала в открытом доступе. Мой оконечник тоже имел достаточно глубокую ОООС, но невысокое по сравнению с ними быстродействие – около 50 В/мкс, при сопоставимом выходном напряжении. Ему иногда не хватало способности передать в полной мере натуральность тембров музыкальных инструментов и голосов исполнителей, эмоции музыкантов. На некоторых композициях подача музыки упрощалась, часть тембрального богатства скрывалось за некой тонкой серой вуалью. Наверное, это и называют «транзисторным звучанием», присущим УМ с обратной связью.

Причины «транзисторного» звука в УМ с ОООС неоднократно обсуждались и на форумах, и в книгах по схемотехнике, и в публикациях журналов, соответствующих данной тематике. Одна из известных версий, которой и я придерживаюсь, заключается в том, что низкое выходное сопротивление охваченных общей ООС усилителей, измеренное на синусоидальном сигнале и активной нагрузке, совсем не остается таковым при воспроизведении музыки на АС, что позволяет сигналам противо-ЭДС от динамических головок проникать с выхода усилителя по цепям обратной связи на его вход. Эти сигналы не вычитаются ОООС, так как уже отличаются по форме и имеют фазовый сдвиг относительно исходных, поэтому они благополучно усиливаются и снова попадают в акустические системы, вызывая дополнительные искажения и посторонние звуки в аудиотракте. Методы борьбы с этим эффектом периодически обсуждаются. Как примеры, можно привести следующие:

1. «Ложный» канал ОООС, когда ее сигнал снимается с одного из параллельно включенных элементов оконечного каскада, который не подсоединен к АС, а нагружен на резистор определенного номинала.

2. Снижение выходного сопротивления УМ еще до охвата ОООС.

3. Увеличение быстродействия внутри петли ОООС до «космических» скоростей.

Естественно, что самый действенный способ борьбы с артефактами ОООС - это исключение ее из схемотехники УМ, но мои попытки построить что-то стоящее без ОООС на транзисторах не увенчались успехом. Начинать с нуля в сфере ламповой аудиотехники посчитал уже нецелесообразным для себя. Способ из пункта «1» вызывал много вопросов, поэтому начал опыты с увеличением быстродействия внутри петли обратной связи, учитывая и пункт «2». Хотелось бы сразу обратить внимание на тот факт, что скорость нарастания выходного напряжения, достаточная для правильного воспроизведения усилителем атаки звука музыкальных инструментов, является величиной относительно небольшой, а ее сверхвысокие значения актуальны только по отношению к работе ОООС.

Понятно, что в усилителях с общей ООС не все проблемы решаются увеличением скорости нарастания, но основная мысль была в следующем, при прочих равных параметрах: чем выше скорость внутри петли ОООС, тем быстрее будут затухать «хвосты» некомпенсированных обратной связью сигналов и что должен быть какой-то порог их заметности на слух, учитывая снижение длительности артефактов с повышением быстродействия. Двигаясь по этому направлению, очень быстро столкнулся с проблемой приблизиться хотя бы к планке 100 В/мкс в УМ на дискретных элементах - при наличии в схеме каскадов на мощных транзисторах все оказалось гораздо сложнее. В усилителях с обратной связью по напряжению высокое быстродействие у меня никак «не вязалось» с устойчивостью, а в УМ с ТОС (с токовой обратной связью) не удавалось, без применения интегратора, получить на выходе приемлемый уровень постоянного напряжения, хотя со скоростью все было в порядке, да и с устойчивостью проблемы решались. Интегратор меняет звучание не в лучшую сторону, по моему мнению, поэтому очень хотелось обойтись без него.

Ситуация была практически тупиковая и уже не первый раз возникали мысли, что если создавать усилитель мощности с ООС по напряжению, то используя топологию предварительного или телефонного усилителя, гораздо проще будет сделать его быстродействующим, широкополосным, устойчивым и без интегратора, что, по моему мнению, должно положительно сказаться на качестве звучания. Оставалось только придумать, как это реализовать. Почти 10 лет решения не было, но за это время была проведена домашняя «НИР» по исследованию влияния скорости нарастания выходного напряжения внутри петли общей ООС на качество звучания, для чего был создан макет, позволяющий проводить испытания различных композитных усилителей на ОУ.

Результаты моей «НИР» были такими:

1. Быстродействие и полоса пропускания композитного усилителя должны увеличиваться от входа к выходу.

2. Коррекция только однополюсная. Никаких конденсаторов в цепях ООС.

3. Для усилителя с максимальным выходным напряжением 8.5 В RMS, при глубине ОООС около 60 дБ, заметный прирост в качестве звука появляется где-то в интервале 40-50 В/мкс, а затем - уже ближе к 200 В/мкс, когда у усилителя практически перестает быть «слышно» ОООС.

4. Свыше 200 В/мкс заметного улучшения не наблюдалось, но для УМ с выходным напряжением 20 В RMS, к примеру, нужно уже 500 В/мкс для достижения такого же результата.

5. Входные и выходные фильтры, ограничивающие полосу УМ, проявляют себя в звучании далеко не лучшим образом, даже если частота среза существенно выше верхней границы звукового диапазона.

После неудачных опытов с УМ на дискретных элементах, мой взор обратился к быстродействующим ОУ и интегральным буферам, имеющим наибольший выходной ток. Результаты поиска были неутешительные – все приборы с большим выходным током безнадежно «медленные», а быстродействующие имеют низкое допустимое напряжение питания и не очень большой выходной ток.

В 2008 году, случайно, в Интернете нашлось дополнение к спецификации на интегральный буфер BUF634T, где самими разработчиками приводилась схема композитного усилителя с тремя такими буферами на выходе, соединенными параллельно (рис. 1) – именно тогда пришла идея спроектировать УМ с большим количеством таких буферов в выходном каскаде.

BUF634T – это широкополосный (до 180 МГц), сверхбыстродействующий (2000 В/мкс) буфер, построенный на основе параллельного повторителя, имеющий выходной ток 250 мА и ток покоя до 20 мА. Единственный его недостаток, можно сказать, - это низкое напряжение питания (+\- 15 В номинальное и +\- 18 В – максимально допустимое), что накладывает определенные ограничения на амплитуду выходного напряжения.

Остановил все-таки свой выбор на BUF634T, смирившись с низким выходным напряжением, так как все остальные характеристики буфера и его звуковые свойства меня полностью устраивали, и начал проектировать УМ с максимальной выходной мощностью 20 Вт/4Ом.

Рис.1

Выбор количества элементов выходного каскада свелся к тому, чтобы получить УМ, работающий в чистом классе А на нагрузку 8 Ом и обеспечить режимы элементов выходного каскада по току далекие от предельных. Требуемое количество определилось как 40+1. Для дополнительного 41-го буфера был установлен минимальный ток покоя - всего 1.5 мА, а использовать его предполагалось для того, чтобы осуществить первый запуск конструкции еще до установки радиаторов, а также с целью проведения некоторых настроек и экспериментов в более комфортных условиях. Впоследствии оказалось, что это была очень хорошая идея.

Как известно, параллельное соединение интегральных микросхем не приводит к увеличению общего уровня шума и Кг, но снижается входное сопротивление такого модуля и растет его входная емкость. Первое - не критично: входное сопротивление BUF634T составляет 8 МОм и, соответственно, суммарное не будет ниже 195 кОм, что более чем приемлемо. С входной емкостью ситуация на так радужна: 8 пФ на буфер дает 328 пФ общей входной емкости, что является уже заметной величиной и негативно скажется на работе раскачивающего ОУ (рис. 1). Для глобального снижения выходного сопротивления драйвера оконечного каскада, перед ним был введен еще один ОУ, охваченный собственной петлей ООС. Таким образом, схема выросла в тройной композитный усилитель, но в котором выполнялись все пункты результатов моей «НИР». После многочисленных экспериментов определился состав УН композитного усилителя: AD843 занял место входного ОУ, а мощный быстродействующий ОУ AD811, с токовой ООС, был призван выполнять функции выходного буфера драйверного каскада. Для гарантированного получения требуемого быстродействия УМ (свыше 200 В/мкс) коэффициент усиления AD811 был выбран равным двум, что в идеале удваивало имеющиеся 250 В/мкс у AD843 и позволяло надеяться, что при соответствующей схемотехнике и удачном конструктиве удастся сохранить требуемое значение скорости нарастания выходного напряжения для полной схемы УМ. Забегая вперед, отмечу, что ожидания оправдались – реальное значение этого параметра с буферами на выходе получилось более 250 В/мкс.

Общая схема усилителя претерпела множество изменений за время настройки и доводки, поэтому приведу сразу финальный вариант, который включает в себя все исправления и доработки (рис. 2).

Рис. 2

Структура проста – селектор входов, регулятор громкости, УН, буферный усилитель для записи на магнитофон, оконечный каскад и реле защиты, которое управляется оптоэлектронной схемой задержки подключения АС и защиты их от постоянного напряжения (рис.3). Для компактности, буферы и сопутствующие им резисторы объединены по 10 шт, но нумерация деталей сохранена в полном объеме. Как видно на рис. 2, контактная группа реле защиты УМ (К6) не включена в цепь прохождения звука и замыкает выход на землю во время переходных процессов или возможных аварийных ситуаций.

Рис. 3

Для BUF634T такое включение не опасно, тем более что все буферы имеют на выходе по резистору 10 Ом. Во избежание потери устойчивости усилителем, из-за замыкания на землю резистора ОООС (R15), одновременно со срабатыванием реле К6 замыкается и реле К5, образующее временную цепь ОООС драйверного каскада через резистор R14. Если номиналы резисторов R14 и R15 равны, то никаких посторонних щелчков в АС во время работы защиты нет, даже если они чувствительностью свыше 100 дБ.

Стоит заметить, что первый год эксплуатации усилитель надежно функционировал и без реле К5, и без временной цепи ООС с R14, но мне не давала покоя сама вероятность возникновения самовозбуждения во время работы защиты, поэтому были введены эти дополнительные элементы. Кстати, усилитель прекрасно работает и без охвата оконечного каскада цепью ОООС. Можно убрать резистор R15, реле К5, а резистором R14 замкнуть обратную связь в УН, что я и делал, в качестве эксперимента. Мне так звук понравился меньше – возможно, что это тот вариант, когда от использования сверхбыстродействующей обратной связи получаем больше плюсов, чем минусов.

На схеме также видно, что один из 4-х входов (вход CD) переводит УМ в режим усилителя постоянного тока (УПТ), а с входа LP (проигрыватель виниловых дисков) реализована функция «Tape Monitor», причем без дополнительных контактных групп в цепи прохождения сигнала. Являюсь поклонником аналоговой записи, поэтому сделал для себя именно так. Если в аудиосистеме нет аналоговых звукозаписывающих устройств, то блок на ОУ IC1 можно исключить.

На схеме не показаны блокировочные конденсаторы по питанию – они для удобства будут отображены на схеме БП.

Идеология этого усилителя в значительной степени отличается от классической и основывается на принципе разделения токов – каждый элемент оконечного каскада работает с малым током, в очень комфортном режиме, но достаточное количество этих элементов, включенных параллельно, могут обеспечить данному 20-Ваттному усилителю максимальный ток в нагрузке более 10 А постоянно и до 16 А в импульсе. Таким образом, выходные каскады нагружены во время прослушивания, в среднем, не более чем на 5-7%. Единственное место в усилителе, где могут проходить большие токи, – это две медные шины на плате УМ, ведущие к терминалам для подключения АС, куда сходятся вместе выходы всех BUF634T каждого канала.

В рамках этой же идеологии был разработан и блок питания УМ (рис.4) – в нем также все силовые элементы работают с относительно небольшими токами, но их тоже много, и в результате суммарная мощность БП в 4 раза превышает максимальную потребляемую усилителем. БП – это одна из самых важных частей в усилителе, которую, с моей точки зрения, стоит рассмотреть подробнее. Усилитель построен по технологии «двойное моно» и поэтому содержит на «борту» два независимых БП для сигнальных цепей, полностью стабилизированных, мощностью по 150 Вт каждый, отдельные стабилизаторы для усилителя напряжения, а также БП для обеспечения сервисных функций, с питанием от отдельного сетевого трансформатора 20 Вт. Все сетевые трансформаторы БП фазированы между собой – при изготовлении трансформаторов были помечены проводники начала и конца первичных обмоток.

Рис. 4

Силовая часть каждого канала разделена на 4 двухполярных линии, что позволило снизить ток нагрузки каждого стабилизатора до величины всего 200 мА, и увеличить падение напряжения на них до 10 В. В таком режиме даже простые интегральные стабилизаторы типа LM7815 и LM7915 прекрасно себя зарекомендовали в питании звуковых цепей. Можно было использовать более «продвинутые» микросхемы LT317 и LT337, но в наличии имелось много оригинальных LM7815С и LM7915С от Texas Instruments, с выходом 1.5 А, что и определило выбор. Суммарно, питание сигнальных цепей усилителя обеспечивается с помощью двадцати таких интегральных стабилизаторов – 4 для УН и 16 для ВК (рис.4). Каждая пара стабилизаторов силовой части питает 10 шт. BUF634T. Одна пара стабилизаторов для УН нагружена связкой AD843+AD811 одного канала. RC цепь (R51, C137, к примеру) перед стабилизаторами УН имеет двойное назначение: защищает выпрямитель от броска тока при включении питания УМ и образует фильтр с частотой среза ниже края звукового диапазона (около 18 Гц), который заметно снижает амплитуду пульсаций выпрямленного напряжения и уровень других помех, что немаловажно для входных каскадов.

Еще одной особенностью блока питания является то, что основная часть всех конденсаторов фильтра (160000 мкФ из 220000 мкФ) находятся после стабилизаторов, что дает возможность отдавать в нагрузку большой ток, при необходимости. Однако это потребовало введения системы мягкого старта «Soft Start» для защиты стабилизаторов при включении усилителя и начальном заряде батареи емкостей. Как видно на рис. 4, Soft Start реализован достаточно просто, на одном транзисторе (VT1), который с задержкой (порядка 9 с) подключает слаботочное реле К10, включающее, в свою очередь, 4 сильноточных реле К11-К14, с четырьмя группами контактов в каждом, замыкающих 16 ограничивающих ток резисторов номиналом 10 Ом (R20, R21, к примеру). То есть, во время включения усилителя, максимальный пиковый ток каждого стабилизатора жестко ограничен величиной 1.5 А, что является для него нормальным режимом работы. «Soft Start» в первичной цепи 220 В не использую – в случае обрыва ограничивающего ток резистора или потери контакта в местах пайки его выводов возможны тяжелые последствия для всего УМ.

На БП для сервисных функций возложено подключение сетевого напряжения к основным трансформаторам (реле К8), питание компонентов системы Soft Start, реле селектора входов, напряжение питания которых, кстати, тоже стабилизировано. Реализован также выход +5 В, выведенный на разъем на задней панели УМ, – это уже некий стандарт в моих усилителях для одновременного включения каких-либо внешних блоков. Данный усилитель вполне может работать как усилительно-коммутационное устройство (предварительный усилитель) для более мощных моноблоков, к примеру, которые будут включаться при подаче на них управляющего напряжения +5 В.

Блок питания усилителя был построен в первую очередь, так как дальнейшее продвижение процесса разработки требовало наличие полноценного БП, чтобы первый запуск, эксперименты и настройку производить в режиме близком к реальным условиям эксплуатации. После успешного запуска всех цепей питания, на плате УМ был собран селектор входов, узел задержки включения и защиты АС, а также композитный усилитель с одним BUF634T (BUF41) на выходе, в качестве оконечного каскада. Как уже упоминалось выше, этот 41-й буфер имеет малый ток покоя и не требует установки на радиатор, но к выходу усилителя теперь запросто подключались наушники, что давало возможность слухового контроля, наряду с измерениями. По окончании отладки схемы с одним выходным буфером в каждом канале, оставалось только впаять остальные 80 шт. и посмотреть, что из этого получится. Никаких гарантий положительного результата у меня не было, да и быть не могло - отсутствовала информация об успешно реализованных подобных проектах других разработчиков. Насколько мне известно, конструкций на параллельных ОУ, имеющих аналогичное быстродействие, ни в России, ни за рубежом нет и сейчас.

Результат все же оказался положительным. Так как усилитель был собран на жестком шасси из алюминиевых брусков, где были закреплены и все коммутационные разъемы (фото 1), то подключить его к аудиосистеме возможно было и без корпуса. Начались первые прослушивания, но об этом чуть позже - сначала, приведу некоторые параметры:

Фото 1

Выходная мощность: 20 Вт/4Ом, 10 Вт/8Ом (класс А)

Полоса пропускания: 0 Гц – 5 МГц (вход CD)

1.25Гц - 5 МГц (входы AUX, Tape, LP)

Скорость нарастания выходного напряжения: более 250 В/мкс

Коэффициент усиления: 26 дБ

Выходное сопротивление: 0.004 Ом

Входное сопротивление: 47 кОм

Чувствительность входов: 500 мВ

Отношение сигнал/шум: 113.4 дБ

Потребляемая мощность: 75 Вт

Мощность блока питания: 320 Вт

Габаритные размеры, мм: 450х132х390 (без учета высоты ножек)

Вес: 18 кг

На основании параметров, даже не заглядывая в схему, очевидно, что в усилителе отсутствуют входные и выходные фильтры, а также внешние цепи частотной коррекции. Но стоит заметить, что при этом он устойчив и прекрасно работает даже с неэкранированными межблочными кабелями. Достаточно информативна в этом отношении и осциллограмма меандра 2 кГц 5В/дел, на нагрузке 8 Ом при почти максимальном уровне выходного напряжения (Фото 2).

Фото 2

С моей точки зрения, это заслуга правильной разводки проводников «земли», а также большая площадь их поперечного сечения: от 4 кв.мм. до 10 кв.мм. (включая дорожки на печатных платах).

Есть осциллограммы, снятые и на частотах 10кГц, 20кГц и 100кГц, но проверки на высоких частотах проводились с малым уровнем сигнала, поэтому уже сказывалось наличие высокоОмного регулятора громкости на входе, а также R-C цепь Цобеля на выходе УМ, которая еще присутствовала в то время (меандр 100 кГц 50мВ/дел - фото 3).

Фото 3

При первом же прослушивании в домашней аудиосистеме стало понятно, что аппарат звучит и что пора заказывать корпус, чтобы можно было поехать с ним на «гастроли»:) С момента завершения работ над проектом и первого прослушивания прошло уже более 5 лет. В течение этого времени были проведены десятки (более 70-ти, по грубым подсчетам) сравнительных прослушиваний усилителя с эксклюзивными ламповыми и транзисторными УМ от известных производителей, а также с авторскими конструкциями высокого уровня. Исходя из полученных экспертных оценок, можно сказать, что усилитель не уступает по натуральности звучания большинству прослушанных двухтактных и однотактных ламповых и транзисторных усилителей, построенных без использования отрицательной обратной связи, но часто существенно их превосходит по музыкальному разрешению. Многие любители лампового звука и приверженцы однотактных УМ без ООС замечали, что в данной конструкции практически не «слышна» работа отрицательной обратной связи и «ничем себя не выдает» наличие в схеме двухтактных выходных каскадов.

Усилитель подключался к различной акустике – это и АС известных российских производителей: Александра Клячина (модели: MBV (MBS), PM-2, N-1, Y-1), рупорные АС Александра Князева, полочные АС на профессиональных динамиках фирмы Tulip Acoustics, АС иностранных брендов средней и высокой ценовой категории: Klipsh, Jamo, Cerwin Vega, PBN Audio, Monitor Audio, Cabasse и многих других, с разной чувствительностью и входным импедансом, многополосные со сложными и простыми разделительными фильтрами, широкополосные без разделительных фильтров, АС с разным акустическим оформлением. Особых предпочтений выявлено не было, но лучше всего УМ раскрывается на напольной акустике с полноценным НЧ диапазоном и, желательно, чувствительностью повыше, так как выходная мощность невелика.

На начальном этапе прослушивания организовывались не с целью «спортивного» интереса – их основная задача состояла в выявлении каких-либо артефактов в звучании, которые можно попытаться исправить. Очень информативные и полезные с этой точки зрения прослушивания были в аудиосистеме Александра Клячина, где имелась уникальная возможность оценить звучание усилителя сразу на 4-х различных моделях АС, причем одни из этих АС (Y-1) так понравились, что вскоре стали компонентами моей домашней аудиосистемы (Фото 4). Естественно, что было очень приятно получить высокую оценку своему изделию и некоторые замечания от аудиоэксперта, имеющего огромный опыт.

Фото 4

Аудиосистема известного мэтра российского Hi-End Юрия Анатольевича Макарова (фото 5, УМ на прослушивании), построенная в специально оборудованной комнате прослушивания и являющаяся референсной во всех отношениях, внесла основные коррективы в конструкцию данного усилителя: была удалена цепь Цобеля с выхода УМ и основной вход сделан в обход разделительного конденсатора. В этой аудиосистеме слышно все и даже больше, поэтому трудно переоценить ее вклад и советы Юрия Анатольевича в процесс доводки звучания усилителя. Состав его аудиосистемы: источник – транспорт и ЦАП с отдельным блоком питания Mark Levinson 30.6, АС Montana WAS от PBN Audio, бескомпромиссный однотактный ламповый усилитель «Император» и все антифазные кабели конструкции Ю.А. Макарова. Нижняя граничная частота АС Montana WAS 16 Гц (-3 дБ) позволила оценить «вклад» разделительного конденсатора, причем достаточно качественного (MKP Intertechnik Audyn CAP KP-SN), в искажения НЧ диапазона музыкального сигнала, а высочайшее музыкальное разрешение аудиосистемы - услышать негативное влияние выходного фильтра, в виде R-C цепи Цобеля, которая не оказывала никакого влияния на устойчивость усилителя и вскоре была удалена с платы. Подключение внешних низкоОмных регуляторов громкости от 100 Ом до 600 Ом (штатный РГ ставился в положение максимум) дало понимание того факта, что даже высококачественный дискретный регулятор DACT 50 кОм, использованный в моем усилителе, неплохо было бы заменить на меньший номинал (из подключаемых внешних мне показался лучшим РГ 600 Ом), но для этого пришлось бы достаточно много переделывать и было принято решение реализовать это и другие накопившиеся усовершенствования уже в новом проекте.

Фото 5

Наверное, стоит упомянуть и об участии усилителя в Выставке в 2011 году (фото 6), как единственного некоммерческого проекта, материал о которой был опубликован в журнале Stereo&Video за январь 2012 года, где УМ был назван «открытием года». Демонстрация шла с АС Tulip Acoustics, имеющих чувствительность 93 дБ при сопротивлении 8 Ом и, как ни странно, имеющихся 10 Вт/8 Ом оказалось достаточно в большом зале с высоким уровнем фонового шума. 10 Вт от усилителя в классе А, у которого каждый Ватт выходной мощности достаточно обеспечен энергоемкостью блока питания, воспринимаются субъективно громче, по моим наблюдениям, чем звучание усилителя с более высокой выходной мощностью, но с оконечными каскадами, содержащимися на «голодном пайке».

Фото 6

После Выставки, ко мне участились обращения через электронную почту и личные сообщения форумов от желающих повторить проект, но возникали определенные сложности –информационная поддержка представлялась всем желающим, но мои платы были нарисованы на миллиметровой бумаге, с двух сторон, и не годились для сканирования в файл, так как бумага просвечивалась насквозь, и получался практически нечитаемый рисунок. Без готовой печатной платы повторение конструкции сильно усложнялось и энтузиазм угасал. Теперь, на форуме портала Vegalab.ru, доступна электронная версия платы, автором которой является известный на русскоязычных форумах специалист по разводке печатных плат Владимир Лепехин из Рязани. Плата находится в свободном доступе, ссылка на нее есть в первом посте темы про этот усилитель. Тему найти очень просто: достаточно набрать фразу «Prophetmaster amplifier» в строке поиска Яндекса или другой поисковой программы. Именно на этой плате одному из участников форума Vegalab - Сергею из Гомеля (Serg138) удалось повторить данный проект и получить очень хороший результат. Информацию о данной реализации УМ и фото его конструкции также можно найти в соответствующей теме, по ссылкам в первом посте.

Несколько советов:

При выборе электролитических конденсаторов руководствовался собственными измерениями ESR и тока утечки, поэтому стоят оригинальные Jamicon. Специально вставил слово «оригинальные», потому что их очень часто подделывают и многие уже, наверное, сталкивались с некачественными изделиями под маркой этого производителя. А реально, это одни из лучших конденсаторов для использования в питании звуковых цепей.

Регулятор громкости установлен DACT 50 кОм. Сейчас, я бы выбрал их наименьший номинал – 10 кОм или использовал бы релейный регулятор Никитина с постоянным входным и выходным сопротивлением 600 Ом. РГ типа ALPS RK-27 будет намного хуже и не рекомендуется к использованию.

В шунтах электролитов установлено, суммарно, более 90 мкФ пленочных конденсаторов. На моих платах «винтажные» Evox 70-х годов, которые достались по случаю, но ничем не хуже будут полипропиленовые Rifa PEh526, Wima MKP4, WimaMKP10.

Реле рекомендую Finder в силовой части, защитеАС и софтстарте, а для селектора входов нужно использовать только такие реле, у которых в параметрах нормирован минимальный коммутируемый ток. Таких реле выпускается немного моделей, но они есть.

Отечественные быстродействующие выпрямительные диоды КД213 (10 А) или КД2989 (20 А) в питании оконечного каскада будут лучше большинства импортных.

Хочу заметить, что схемотехника усилителя достаточно проста, но для работы со столь быстродействующими и широкополосными микросхемами нужны соответствующие навыки и измерительные приборы – функциональный генератор, осциллограф с полосой не менее 30 МГц (лучше - 50 МГц).

В заключение, хотелось бы сказать, что сделанные мной выводы по результатам проведенных экспериментов, а также в течение работ над данным проектом и последующей его доводки, не претендуют на абсолютную истину. Путей достижения цели, которой в данном случае является качественный звук, достаточно много и каждый из них подразумевает комплекс мер, которые могут не давать положительного результата по отдельности. Поэтому, простых рецептов в этой области не бывает.

Статья была опубликована в журнале Радиолюбитель, в номерах 7 и 8 за 2014 год.

Фотографии усилителя на сайте датской компании DACT:

http://www.dact.com/html/prophetmaster.html

С уважением, Олег Шаманков (Prophetmaster)

stereo.ru

Простой транзисторный усилитель своими руками

Сейчас в интернете можно найти огромное количество схем различных усилителей на микросхемах, преимущественно серии TDA. Они обладают достаточно неплохими характеристиками, хорошим КПД и стоят не так уж и дорого, в связи с этим и пользуются такой популярностью. Однако на их фоне незаслуженно остаются забытыми транзисторные усилители, которые хоть и сложны в настройке, но не менее интересны.

Схема усилителя

В этой статье рассмотрим процесс сборки весьма необычного усилителя, работающего в классе «А» и содержащего всего 4 транзистора. Эта схема разработана ещё в 1969 году английским инженером Джоном Линсли Худом, несмотря на свою старость, она и по сей день остаётся актуальной. В отличие от усилителей на микросхемах, транзисторные усилители требуют тщательной настройки и подбора транзисторов. Эта схема – не исключение, хоть она и выглядит предельно простой. Транзистор VT1 – входной, структуры PNP. Можно экспериментировать с различными маломощными PNP-транзисторами, в том числе и с германиевыми, например, МП42. Хорошо себя зарекомендовали в этой схеме в качестве VT1 такие транзисторы, как 2N3906, BC212, BC546, КТ361. Транзистор VT2 – структуры NPN, средней или малой мощности, сюда подойдут КТ801, КТ630, КТ602, 2N697, BD139, 2SC5707, 2SD2165. Особое внимание стоит уделить выходным транзисторам VT3 и VT4, а точнее, их коэффициенту усиления. Сюда хорошо подходят КТ805, 2SC5200, 2N3055, 2SC5198. Нужно отобрать два одинаковых транзистора с как можно более близким коэффициентом усиления, при этом он должен более 120. Если коэффициент усиления выходных транзисторов меньше 120, значит в драйверный каскад (VT2) нужно поставить транзистор с большим усилением (300 и более).

Подбор номиналов усилителя

Некоторые номиналы на схеме подбираются исходя из напряжения питания схемы и сопротивления нагрузки, некоторые возможные варианты показаны в таблице:Не рекомендуется поднимать напряжение питания более 40 вольт, могут выйти из строя выходные транзисторы. Особенность усилителей класса А – большой ток покоя, и, следовательно, сильный разогрев транзисторов. При напряжении питания, например, 20 вольт и токе покоя 1.5 ампера усилитель потребляет 30 ватт, не зависимо от того, подаётся на его вход сигнал или нет. На каждом из выходных транзисторов при этом будет рассеиваться по 15 ватт тепла, а это мощность небольшого паяльника! Поэтому транзисторы VT3 и VT4 нужно установить на большой радиатор, используя термопасту. Данный усилитель склонен в появлению самовозбуждений, поэтому на его выходе ставят цепь Цобеля: резистор сопротивлением 10 Ом и конденсатор 100 нФ, включенные последовательно между землёй и общей точкой выходных транзисторов (на схеме эта цепь показана пунктиром). При первом включении усилителя в разрыв его питающего провода нужно включить амперметр для контроля тока покоя. Пока выходные транзисторы не разогрелись до рабочей температуры, он может немного плавать, это вполне нормально. Также при первом включении нужно замерять напряжение между общей точкой выходных транзисторов (коллектор VT4 и эммитер VT3) и землёй, там должна быть половина питающего напряжения. Если напряжение отличается в большую или меньшую сторону, нужно покрутить подстроечный резистор R2.

Плата усилителя:

Плата изготовлена методом ЛУТ.

Собранный мной усилитель

Несколько слов о конденсаторах, входном и выходном. Ёмкость входного конденсатора на схеме обозначена 0,1 мкФ, однако такой ёмкости не достаточно. В качестве входного следует поставить плёночный конденсатор ёмкостью 0,68 – 1 мкФ, иначе возможен нежелательный срез низких частот. Выходной конденсатор С5 стоит взять на напряжение не меньшее, чем напряжением питания, жадничать с ёмкостью также не стоит. Преимуществом схемы этого усилителя является то, что она не представляет опасности для динамиков акустической системы, ведь динамик подключается через разделительный конденсатор (С5), это значит, что при появлении на выходе постоянного напряжения, например, при выходе усилителя из строя, динамик останется цел, ведь конденсатор не пропустит постоянное напряжение.

sdelaysam-svoimirukami.ru