Галилея парадокс: Парадокс Галилея — Википедия – Парадокс Галилея — это… Что такое Парадокс Галилея?

Содержание

4. Парадокс Галилея — 10 любопытных парадоксов

Полный текст поста читайте по ссылке: 10 любопытных парадоксов Автор:
19 октября 2018 13:02 4. Парадокс Галилея Открытый Галилео Галилеем феномен демонстрирует противоречивые свойства бесконечных множеств. Краткая формулировка парадокса такова: натуральных чисел столько же, сколько их квадратов, то есть, количество элементов бесконечного множества 1, 2, 3, 4… равно количеству элементов бесконечного множества 1, 4, 9, 16…

На первый взгляд, никакого противоречия здесь нет, однако тот же Галилей в своей работе «Две науки» утверждает: некоторые числа являются точными квадратами (то есть из них можно извлечь целый квадратный корень), а другие нет, поэтому точных квадратов вместе с обычными числами должно быть больше, чем одних точных квадратов. Между тем, ранее в «Науках» встречается постулат о том, что квадратов натуральных чисел столько же, сколько самих натуральных чисел и эти два утверждения прямо противоположны друг другу.

Сам Галилей считал, что парадокс можно решить только применительно к конечным множествам, однако Георг Кантор, один из немецких математиков XIX-го века, разработал свою теорию множеств, согласно которой второй постулат Галилея (об одинаковом количестве элементов) верен и для бесконечных множеств. Для этого Кантор ввёл понятие мощности множества, которые при расчётах для обоих бесконечных множеств совпали.

4. Парадокс Галилея

Понравился пост? Поддержи Фишки, нажми:

Новости партнёров

10 Парадоксов, которые очень удивят вас

Парадокс — это утверждение, которое, по-видимому, противоречит само себе и, тем не менее, может быть правдой. Большинство логических парадоксов, как известно, являются неверными аргументами, но, несмотря на это, они важны для продвижения критического мышления. Ниже представлены десять парадоксов, которые совершенно точно удивят вас.

1. Парадокс ценности: Почему вода дешевле, чем бриллианты, ведь для выживания людям нужна вода, а не бриллианты?
10 Парадоксов, которые очень удивят вас
Парадокс ценности (также известный как парадокс воды и алмазов, или парадокс Смита) является явным противоречием, состоящим в следующем: несмотря на то, что вода куда более полезна для выживания человека, бриллианты обладают намного более высокой ценой на рынке. На низших уровнях потребления, вода обладает гораздо более высокой предельной полезностью, чем бриллианты, и таким образом, является более ценной. Люди используют воду в больших количествах, чем они используют бриллианты, таким образом, предельная полезность и цена воды ниже, чем у бриллиантов.

При объяснении парадокса алмазов, ученые, изучающие предельную полезность, разъясняют, что в расчёт берётся не общая польза бриллиантов или воды, а польза каждой единицы воды и бриллиантов по отдельности. Абсолютно верно, что совокупная полезность воды имеет огромное значение для людей, так как они нуждаются в ней, чтобы выжить. Однако исходя из того, что воды в мире очень много, предельная полезность воды на самом деле низкая. Другими словами, каждую дополнительную единицу воды, которая становится доступной, можно использовать в менее критических целях, так как основная потребность воды (для выживания) удовлетворена.

Поэтому, любая отдельная единица воды теряет свою ценность из-за того, что в мире есть огромное её количество. С другой стороны бриллиантов в мире очень мало. Их настолько мало, что польза от одного бриллианта во много раз превышает пользу стакана воды, которой в мире очень много. Таким образом, бриллианты обладают гораздо большей ценностью для людей. Поэтому, те люди, которые хотят получить бриллианты согласны платить за них гораздо большую цену, чем за стакан воды, а продавцы бриллиантов устанавливают на каждый бриллиант стоимость, которая намного превышает стоимость стакана воды.

2. Парадокс убитого дедушки: Что было бы, если бы вы отправились назад во времени и убили вашего дедушку до того, как он встретил вашу бабушку?
10 Парадоксов, которые очень удивят вас
Парадокс убитого дедушки является предложенным парадоксом путешествия во времени, который впервые был описан писателем в жанре научной фантастике Рене Баржавелем (René Barjavel) в его книге, опубликованной в 1943 году под названием «Неосторожный путешественник» (Le Voyageur Imprudent).

Парадокс описывается следующим образом: путешественник во времени отправился в прошлое в тот момент, когда его дедушка и бабушка ещё не были женаты. В тот момент, путешественник убивает своего дедушку, и как следствие, не рождается. Если он не родился, он не может отправиться назад в прошлое и убить своего дедушку, это означает, что он всё-таки был рождён и далее по замкнутому кругу.

Предполагая наличие причинно-следственной связи между настоящим и будущим путешественника во времени, парадокс убитого дедушки, который нарушает эту связь, может рассматриваться как невозможный (таким образом, предотвращая самовольную переделку чьей-то судьбы). Тем не менее, для избегания парадокса был теоретически допущен ряд гипотез, таких как идея о том, что прошлое нельзя изменить, поэтому дедушка, должно быть, пережил попытку его убийства (как было заявлено ранее). Другая гипотеза состоит в том, что путешественник во времени создаёт или попадает в альтернативную временную линию или параллельную вселенную, в которой сам путешественник никогда не родился.

Вариантом парадокса убитого дедушки является парадокс Гитлера или парадокс убийства Гитлера, довольно часто встречающийся троп в научной фантастике, в котором главный герой отправляется назад во времени, чтобы убить Адольфа Гитлера до того, как он спровоцирует Вторую мировую войну. Вместо того, чтобы обязательно предотвратить путешествие во времени, само действие убирает любую причину это делать, наряду с любой информацией о том, что причина для путешествия во времени когда-либо существовала, изначально убирая, таким образом, любую необходимость в путешествии во времени.

3. Парадокс Тесея: «Если все части корабля были заменены, остаётся ли корабль тем же кораблём?»
10 Парадоксов, которые очень удивят вас


Корабль Тесея (Theseus) это парадокс, который поднимает следующий вопрос: остаётся ли предмет, в котором заменили все составные части, по сути, тем же предметом?

Этот парадокс обсуждался древними философами, и не так давно Томасом Гоббсом (Thomas Hobbes) и Джоном Локком (John Locke). Некоторые говорят: «корабль останется тем же», в то время как другие говорят, что «он не останется прежним».

Основываясь на истории можно сделать вывод, что то тело, которое мы видим в зеркале, является абсолютно другим телом по сравнению с тем, что мы видели семь лет назад или ранее, так как клетки человеческого тела регенерируются примерно каждые семь лет.

4. Парадокс Галилея: Хотя не все числа являются квадратами натуральных чисел, существует не больше натуральных чисел, чем квадратов натуральных чисел


10 Парадоксов, которые очень удивят вас
Парадокс Галилея является демонстрацией одного из удивительных свойств бесконечных множеств. В своей последней научной работе «Две Науки» (Two New Sciences), он, по-видимому, сделал два противоречащих друг другу суждения о натуральных числах.

Первое состоит в том, что некоторые числа являются квадратами, в то время как другие числа ими не являются. Таким образом, всех чисел, включая квадраты и не квадраты, должно быть больше чем просто квадратов. Тем не менее, для каждого квадрата существует одно положительное число, которое является его квадратным корнем, и для каждого положительного числа существует только один квадрат, соответственно, одних не может быть больше, чем других. Это раннее использование, хотя и не первое, идеи о взаимно однозначном соответствии в контексте бесконечного множества. Галилей пришел к выводу, что идеи меньшего, равного, большего относятся к ограниченным, а не бесконечным множествам.

В девятнадцатом веке, используя те же методы, немецкий математик Георг Кантор (Georg Cantor), который лучше всего известен как изобретатель теории множеств, доказал, что это ограничение не является обязательным. Он показал, что можно значимым способом определить сравнения среди бесконечных множеств (исходя из чего два множества, которые он берёт в расчёт, складывает и возводит в квадрат, обладают «одинаковым размером»), и в соответствии с этим определением, некоторые множества являются строго большими, чем другие. Тем не менее, удивительно насколько Галилей забежал вперёд в своей более поздней работе по бесконечным числам. Он показал, что количество точек на отрезке прямой равно количеству точек на более крупном отрезке линии, но ему не удалось обнаружить доказательства Кантора, заключающегося в том, что эти количества больше, чем целые числа.

5. Парадокс бережливости: Если все попытаются экономить во время рецессии, совокупный спрос упадет, и общая сумма сэкономленная населением будет меньше
10 Парадоксов, которые очень удивят вас
Парадокс бережливости состоит в том, что если все попытаются сэкономить деньги во время экономической рецессии, совокупный спрос упадёт и, в свою очередь, снизит общую сумму, сэкономленную населением, из-за снижения спроса в потреблении и в экономическом росте. Проще говоря, парадокс бережливости, заключается в следующем: общая сумма сэкономленная населением будет меньше, даже в том случае, когда индивидуальные сбережения увеличатся. В более широком смысле, это увеличение индивидуальных сэкономленных сбережений может быть вредоносным для экономики, так как, несмотря на то, что индивидуальная бережливость по общему утверждению является положительной для экономики, в соответствии с парадоксом бережливости – коллективная бережливость может оказать негативное воздействие на экономику. Теоретически, если все люди будут экономить свои сбережения, их объёмы увеличатся, но будет наблюдаться тенденция спада в макроэкономическом статусе.

6. Парадокс Пиноккио: Что было бы, если бы Пиноккио сказал: «Мой нос сейчас растёт»?
10 Парадоксов, которые очень удивят вас
Парадокс Пиноккио наступает тогда, когда Пиноккио говорит «Мой нос сейчас растёт». Этот парадокс также является версией парадокса лжеца.

Парадокс лжеца определён в философии и логики как утверждение «Данное высказывание — ложь». Любые попытки придать этому утверждению классическое двоичное значение истинности приведут к противоречию, или парадоксу. Это происходит потому, что если утверждение «Данное высказывание — ложь» является правдой, тогда оно ложно. Это означает, что формально оно правдиво, но оно также и ложно, и так далее по замкнутому кругу.

Несмотря на то, что парадокс Пиноккио относится к лучшим традициям парадокса лжеца, он является особым случаем, так как у него нет семантических предикатов, например, как в случае утверждения «Данное высказывание — ложь».

Парадокс Пиноккио заключается не в том, что Пиноккио является известным лжецом. Если бы Пиноккио сказал «Я заболеваю», это могло бы быть правдой или ложью, однако предложение Пиноккио «Мой нос сейчас растёт» не может быть ни правдой, ни ложью. Именно поэтому только лишь это предложение создаёт парадокс Пиноккио.

7. Парадокс брадобрея: В деревне, где брадобрей бреет всех тех, кто не бреется сам, кто бреет брадобрея?
10 Парадоксов, которые очень удивят вас
Представьте, что однажды вы проходите мимо парикмахерской и видите вывеску, на которой написано следующее: «Вы бреетесь самостоятельно? Если нет, заходите и я побрею вас! Я брею всех, кто не бреется сам, и никого другого». Это звучит вполне справедливо и довольно понятно, пока вам не придёт в голову следующий вопрос: «А бреет ли брадобрей самого себя?» Если он это делает, то он не должен этого делать, потому что он не бреет тех, кто бреется самостоятельно. Однако если он не бреется самостоятельно, он должен это делать, так как он бреет всех тех, кто не бреется самостоятельно и так далее по замкнутому кругу. Обе вероятности ведут к противоречию.

В этом заключается парадокс брадобрея, который был введён математиком, философом и человеком, отказавшимся исполнять воинскую повинность из Великобритании, по имени Бертран Рассел (Bertrand Russell) в начале двадцатого века. Этот парадокс представил собой огромную задачу, которая изменила всё направление математиков двадцатого века.

В парадоксе брадобрея условием является «бритьё самого себя», но множество всех мужчин, которые бреются самостоятельно невозможно подсчитать, несмотря на то, что это условие кажется вполне понятным. Мы не может подсчитать это множество, потому что мы не может решить входит ли сам брадобрей в него или нет. Оба условия ведут к противоречию.

Попытки обойти парадокс были сосредоточены на ограничении типов множеств, которые допустимы. Сам Рассел предложил «Теорию Типов» (Theory of Types), согласно которой, предложения должны были быть расположены в иерархическом порядке. На самом нижнем уровне должны быть предложения о множествах индивидуумов, на следующем уровне – предложения о множествах индивидуумов и так далее. Это помогает избежать необходимости обсуждения множества множеств, которые не являются членами самих себя, так как две части предложения являются разными типами и соответственно находятся на разных уровнях.

По этой и другим причинам, самым популярным решением парадокса Рассела является так называемая аксиоматизация теории множеств Цермело — Френкеля (Zermelo-Fraenkel). Эта аксиоматизация ограничивает предположение наивной теории множеств, согласно которой при наличии условия, всегда можно создать множество, собрав именно те предметы, которые ему соответствуют. Вместо этого, нужно начинать с индивидуальных вещей, создавая множества из них и работая в порядке возрастания. Это означает, что вам не нужно пытаться разделить это множество на те множества, которые содержат самих себя и на те, которые самих себя не содержат. Вам всего лишь нужно сделать это разделения для элементов любого множества, которое вы создали из индивидуальных вещей посредством определённого количества шагов.

Ещё одно возможное (сексистское) решение парадокса заключается в следующем: просто сделайте брадобрея женщиной.

8. Парадокс дней рождения: Как в такой маленькой группе могут быть два человека, родившихся в один день?
10 Парадоксов, которые очень удивят вас
Парадокс дней рождения состоит в вероятности того, что во множестве случайно выбранных людей, будут два человека, родившихся в один и тот же день. Согласно принципу Дирихле (pigeonhole principle), эта вероятность достигает 100 процентов, когда количество людей достигает 367 (исходя из того, что существует 366 возможных вариантов дат дней рождения, включая 29 февраля). Тем не менее, вероятность в 99 процентов, достигается, когда множество состоит всего лишь из 57 людей, и 50 процентов, если было собрано 23 человека. Эти выводы включают предположение, что каждый день в году (кроме 29 февраля) в равной степени является вероятной датой дня рождения.

9. Проблема курицы и яйца: Что было раньше — курица или яйцо?
10 Парадоксов, которые очень удивят вас
Причинно-следственная дилемма курицы или яйца зачастую звучит как «Что было раньше — курица или яйцо?». Для древних философов вопрос о том, что появилось первым курица или яйцо, также означал ряд вопросов о том, как появилась жизнь во Вселенной и как она началась в целом.

Культурные отсылки к парадоксу курицы или яйца обычно делаются, чтобы указать на бесполезность стремления установить первый случай круговой причины и последствия. Можно предположить, что в этом подходе лежит основополагающая природа вопроса. Буквальный ответ довольно очевиден некоторым людям, так как яйцекладущие виды появились раньше кур. Другие же полагают, что вначале появилась курица, так как куры являются всего лишь одомашненными Банкивскими джунглевыми курами (Red Junglefowls). Однако метафорический взгляд на этот парадокс обуславливает метафизическое основание дилеммы. Чтобы лучше понять её метафорическое значение, вопрос можно переформулировать следующим образом: «Что появилось раньше, Х, который не может существовать без Y, или же Y, который не может существовать без Х?». Когда много лет назад появилась Земля, появилась и курица. Затем она отложила яйцо. Если бы яйцо появилось первым, и из него вылупился бы цыплёнок, кто бы его согревал, и кто бы его кормил?

10. Исчезновение клетки: Почему квадрат появляется без видимой причины?
10 Парадоксов, которые очень удивят вас
Парадокс исчезновения клетки это оптическая иллюзия, используемая на математических лекциях, чтобы помочь студентам понять геометрические фигуры. Он состоит в описании двух расположений фигурок, состоящих из похожих форм, немного разной конфигурации.

Ключом к головоломке является тот факт, что ни один из «треугольников» не является настоящим треугольником, из-за изогнутой гипотенузы. Другими словами «гипотенуза» не является совместимой наклонной, несмотря на то, что она может казаться такой невооружённому человеческому глазу. Поэтому, в то время как изогнутая гипотенуза на первом рисунке на самом деле занимает 32 клетки, на втором рисунке, она занимает 33 клетки, включая «исчезающую» клетку. Обратите внимание на точку сети, где соприкасаются красный и синий треугольники на нижнем изображении (5 клеточек вправо и две клеточки вверх от левого нижнего угла комбинированной фигуры), и сравните это с той же точкой на верхнем изображении. Край немного не достаёт до отметки на верхнем изображении, но переходит через неё на нижнем. В результате наложения гипотенуз обеих фигур друг на друга получается очень узкий параллелограмм, площадь которого точно равна площади клетки «исчезнувшей» на нижнем изображении.

Парадокс колеса, который не смогли решить Аристотель и Галилей: bor_odin — LiveJournal

Про этот парадокс колеса знали еще до Аристотеля и не могли этого понять. Аристотель, посчитав себя умнее всех и серьёзно занялся решением этой задачки. Но облом, не получилось! Зато этот парадокс назвали его именем.
Потом за эту задачку взялись один за другим Галилео Галилей, Декарт и Ферма. Но опять облом!

И только в 1715 году правильный анализ этому явлению сумел дать французский астроном Жан-Жак Дорту де Меран.

Что же это за парадокс такой?

Имеем два колеса разного размера, расположенных одно в другом. Оба колеса синхронно катятся и проходят определённое расстояние. Вопрос заключается в следующем: пройдут ли оба колеса одинаковый путь?

Если вы внимательно посмотрите на гифку вверху, то заметите – оба колеса полностью совершают оборот по всей своей окружности, чтобы преодолеть одно и то же расстояние (см. на красную линию). А также очевидно, что одна окружность меньше другой. Это означает, что, либо колёса имеют одинаковую окружность (что в корне неверно), либо разные окружности «разворачиваются» на одинаковую длину (чего быть никак не может).

А если представить, что всё это правда? Тогда технически возможно, что колесо с окружностью в 2,54 сантиметра в состоянии пройти тот же путь за один оборот, что и колесо с окружностью, равной 1,6 километров.

Но такого просто не бывает. Длина окружности с меньшим радиусом не может быть равна длине окружности с большим радиусом. Так в чём же дело?

Я мог бы дать ответ на эту загадку завтра, как делают многие блогеры. Но я же не зверь какой-то, мучить вас не буду.

Давайте проследим маршрут, который проходит каждая точка окружности от начала красной линии до её конца. Перемещайте свой палец по линии, обозначающей радиус круга, одновременно следя за траекторией, которую проходит малая окружность от начала пути до конца.

Затем проследите траекторию, которую проходит большая окружность от начала пути до конца. Очевидно, что точка на большей окружности проходит бо́льшую траекторию, а, следовательно, больший путь, чтобы добраться до той же точки.

Иначе говоря, можно ехать в Москву из Нижнего Новгорода через Владимир, а можно через Архангельск или Астрахань. Расстояние от Нижнего до Москвы остаётся неизменным, но пути, которые придётся проделать по этим маршрутам, далеко не одинаковы.

В этом-то и заключается объяснение парадокса, над которым ломали голову самые выдающиеся умы человечества.

Вообщем, если чуть-чуть напряжёте свой мозг, то разберётесь и поймете, что вы умнее Аристотеля и Галилея. Несмотря на то, что Аристотель доказал, что Земля круглая, а Галилей доказал, что она еще и вертится.


.

10 интересных научных парадоксов (9 фото)

парадокс, интересное

Парадокс — это событие, ситуация, действие или бездействие, которое может существовать или уже существует в реальности, но противоречит логическим объяснениям. Предлагаю вам немного поломать голову над предоставленными под катом 10 любопытными парадоксами.

Парадокс Рассела.

Парадокс, который его открыватель, знаменитый британский философ и математик Бертран Рассел называл не иначе, как парадокс брадобрея, строго говоря, можно считать одной из форм парадокса лжеца.

Предположим, проходя мимо парикмахерской, вы увидели на ней рекламное объявление: «Вы бреетесь сами? Если нет, милости просим бриться! Брею всех, кто не бреется сам, и никого другого!». Закономерно задать вопрос: каким образом цирюльник управляется с собственной щетиной, если он бреет только тех, кто не бреется самостоятельно? Если же он сам не бреет собственную бороду, это противоречит его хвастливому утверждению: «Брею всех, кто не бреется сам».

Конечно, легче всего предположить, что недалёкий брадобрей просто не подумал о противоречии, содержащемся в его вывеске и забыть об этой проблеме, но попытаться понять её суть гораздо интереснее, правда для этого придётся ненадолго окунуться в математическую теорию множеств.

Парадокс Рассела выглядит так: «Пусть K — множество всех множеств, которые не содержат себя в качестве собственного элемента. Содержит ли K само себя в качестве собственного элемента? Если да, это опровергает утверждение, что множества в его составе „не содержат себя в качестве собственного элемента“, если же нет, возникает противоречие с тем, что К является множеством всех множеств, не содержащих себя как собственный элемент, а значит K должно содержать все возможные элементы, включая себя».

Проблема возникает из-за того, что Рассел в рассуждениях использовал понятие «множество всех множеств», которое само по себе довольно противоречиво, и руководствовался при этом законами классической логики, которые применимы далеко не во всех случаях (см. пункт шесть).

Открытие парадокса брадобрея спровоцировало жаркие споры в самых разных научных кругах, которые не утихают до сих пор. Для «спасения» теории множеств математики разработали несколько систем аксиом, но доказательств непротиворечивости этих систем нет и, по мнению некоторых учёных, быть не может.

Парадокс ценности.

Феномен, известный также как парадокс алмазов и воды или парадокс Смита (назван в честь Адама Смита — автора классических трудов по экономической теории, который, как считается, первым сформулировал этот парадокс), заключается в том, что хотя вода как ресурс гораздо полезнее кусков кристаллического углерода, называемых нами алмазами, цена последних на международном рынке несоизмеримо выше стоимости воды.

С точки зрения выживания вода действительно нужна человечеству гораздо больше алмазов, однако её запасы, конечно же, больше запасов алмазов, поэтому специалисты говорят, что ничего странного в разнице цен нет — ведь речь идёт о стоимости единицы каждого ресурса, а она во многом определяется таким фактором, как предельная полезность.

При непрерывном акте потребления какого-либо ресурса его предельная полезность и, как следствие, стоимость неизбежно падает — эту закономерность в XIX-м веке открыл прусский экономист Герман Генрих Госсен. Говоря простым языком, если человеку последовательно предложить три стакана воды, первый он выпьет, водой из второго умоется, а третий пойдёт на мытьё пола.

Большая часть человечества не испытывает острой нужды в воде — чтобы получить достаточное её количество, стоит только открыть водопроводный кран, а вот алмазы имеются далеко не у всех, поэтому они столь дороги.

парадокс, интересное

Парадокс убитого дедушки.

Этот парадокс в 1943-м году предложил французский писатель-фантаст Рене Баржавель в своей книге «Неосторожный путешественник» (в оригинале «Le Voyageur Imprudent»).

Предположим, вам удалось изобрести машину времени, и вы отправились на ней в прошлое. Что произойдёт, если вы встретите там своего дедушку и убьёте его до того, как он встретился с вашей бабушкой? Вероятно, не всем понравится этот кровожадный сценарий, поэтому, скажем, вы предотвратите встречу другим путём, например, увезёте его на другой конец света, где он никогда не узнает о её существовании, парадокс от этого не исчезает.

Если встреча не состоится, ваша мать или отец не появится на свет, не сможет зачать вас, а вы соответственно не изобретёте машину времени и не попадёте в прошлое, поэтому дедушка сможет беспрепятственно жениться на бабушке, у них родится один из ваших родителей и так далее — парадокс налицо.

История с убитым в прошлом дедушкой часто приводится учёными как доказательство принципиальной невозможности путешествий во времени, однако некоторые специалисты говорят, что при определённых условиях парадокс вполне разрешим. Например, убив своего дедушку, путешественник во времени создаст альтернативную версию реальности, в которой он никогда не будет рождён.

Кроме того, многие высказывают предположения, что даже попав в прошлое, человек не сможет на него повлиять, так как это приведёт к изменению будущего, частью которого он является. Например, попытка убийства дедушки заведомо обречена на провал — ведь если внук существует, значит, его дед, так или иначе, пережил покушение.

парадокс, интересное

Корабль Тесея.

Название парадоксу дал один из греческих мифов, описывающий подвиги легендарного Тесея, одного из афинских царей. Согласно легенде, афиняне несколько сотен лет хранили корабль, на котором Тесей вернулся в Афины с острова Крит. Конечно, судно постепенно ветшало, и плотники заменяли прогнившие доски на новые, в результате чего в нём не осталось ни кусочка старой древесины. Лучшие умы мира, в числе которых видные философы вроде Томаса Гоббса и Джона Локка веками размышляли над тем, можно ли считать, что именно на этом судне когда-то путешествовал Тесей.

Таким образом, суть парадокса в следующем: если заменить все части объекта на новые, может ли он быть тем же самым объектом? Кроме того, возникает вопрос — если из старых частей собрать точно такой же объект, какой из двух будет «тем самым»? Представители разных философских школ давали прямо противоположные ответы на эти вопросы, но некоторые противоречия в возможных решениях парадокса Тесея до сих пор существуют.

Кстати, если учесть, что клетки нашего организма практически полностью обновляются каждые семь лет, можно ли считать, что в зеркале мы видим того же человека, что и семь лет назад?

парадокс, интересное

Парадокс Галилея.

Открытый Галилео Галилеем феномен демонстрирует противоречивые свойства бесконечных множеств. Краткая формулировка парадокса такова: натуральных чисел столько же, сколько их квадратов, то есть, количество элементов бесконечного множества 1, 2, 3, 4… равно количеству элементов бесконечного множества 1, 4, 9, 16…

На первый взгляд, никакого противоречия здесь нет, однако тот же Галилей в своей работе «Две науки» утверждает: некоторые числа являются точными квадратами (то есть из них можно извлечь целый квадратный корень), а другие нет, поэтому точных квадратов вместе с обычными числами должно быть больше, чем одних точных квадратов. Между тем, ранее в «Науках» встречается постулат о том, что квадратов натуральных чисел столько же, сколько самих натуральных чисел и эти два утверждения прямо противоположны друг другу.

Сам Галилей считал, что парадокс можно решить только применительно к конечным множествам, однако Георг Кантор, один из немецких математиков XIX-го века, разработал свою теорию множеств, согласно которой второй постулат Галилея (об одинаковом количестве элементов) верен и для бесконечных множеств. Для этого Кантор ввёл понятие мощности множества, которые при расчётах для обоих бесконечных множеств совпали.

парадокс, интересное

Парадокс бережливости.

Самая известная формулировка любопытного экономического явления, описанного Уоддилом Кетчингсом и Уильямом Фостером выглядит следующим образом: «Чем больше мы откладываем на чёрный день, тем быстрее он наступит». Чтобы понять суть противоречия, заключённого в этом феномене, немного экономической теории.

Если во время экономического спада большая часть населения начинает экономить свои сбережения, снижается совокупный спрос на товары, что в свою очередь приводит к уменьшению заработка и как следствие — падению общего уровня экономии и сокращению сбережений. Попросту говоря, возникает своего рода замкнутый круг, когда потребители тратят меньше денег, но тем самым ухудшают своё благосостояние.

В некотором роде парадокс бережливости аналогичен проблеме из теории игр под названием дилемма заключённого: действия, которые выгодны каждому участнику ситуации по отдельности, вредны для них в целом.

парадокс, интересное

Парадокс Пиноккио.

Является разновидностью философской проблемы, известной как парадокс лжеца. Этот парадокс прост по форме, но отнюдь не по содержанию. Его можно выразить в трёх словах: «Это утверждение — ложь», или даже в двух — «Я лгу». В варианте с Пиноккио проблема сформулирована так: «Мой нос сейчас растёт».

Думаю, вам понятно противоречие, содержащееся в этом утверждении, но на всякий случай, расставим все точки над ё: если фраза верна, значит, нос действительно растёт, но это означает что в данный момент детище папы Карло лжёт, чего не может быть, так как мы уже выяснили, что утверждение правдиво. Значит, нос расти не должен, но если это не соответствует действительности, высказывание всё-таки истинно, а это в свою очередь свидетельствует, что Пиноккио лжёт… И так далее — цепочку взаимоисключающих причин и следствий можно продолжать до бесконечности.

Парадокс лжеца показывает противоречие высказывания в разговорной речи формальной логике. С точки зрения классической логики проблема неразрешима, поэтому утверждение «Я лгу» вообще не считается логическим.

парадокс, интересное

Парадокс дней рождения.

Суть проблемы заключается в следующем: если существует группа из 23-х или более человек, вероятность того, что у двух из них дни рождения (число и месяц) совпадут, превышает 50%. Для групп от 60-ти человек шанс составляет свыше 99%, но 100% достигает, только если в группе не менее 367-ми человек (с учётом високосных лет). Об этом свидетельствует принцип Дирихле, названный по имени его открывателя, немецкого математика Петера Густава Дирихле.

Строго говоря, с научной точки зрения это утверждение не противоречит логике и поэтому не является парадоксом, зато оно отлично демонстрирует разницу результатов интуитивного подхода и математических расчётов, ведь на первый взгляд для столь небольшой группы вероятность совпадения кажется сильно завышенной.

Если рассматривать каждого члена группы по отдельности, оценивая вероятность совпадения его дня рождения с чьим-либо другим, для каждого человека шанс составит примерно 0,27%, таким образом, общая вероятность для всех членов группы должна быть около 6,3% (23/365). Но это в корне неверно, ведь количество возможных вариантов выбора определённых пар из 23-х человек гораздо выше числа её членов и составляет (23*22)/2=253, исходя из формулы вычисления так называемого числа сочетаний из данного множества. Не будем углубляться в комбинаторику, можете на досуге проверить правильность этих расчётов.

Для 253-х вариантов пар шанс, что месяц и дата рождения участников одной из них окажутся одинаковыми, как вы наверняка догадались, значительно больше 6,3%.

парадокс, интересное

Проблема курицы и яйца.

Наверняка, каждому из вас хотя бы раз в жизни задавали вопрос: «Что появилось раньше — курица или яйцо?». Искушённые в зоологии знают ответ: птицы появлялись на свет из яиц задолго до возникновения среди них отряда куриных. Стоит отметить, что в классической формулировке говорится как раз о птице и яйце, но и она допускает лёгкое решение: ведь, например, динозавры появились раньше птиц, и они тоже размножались, откладывая яйца.

Если учесть все эти тонкости, можно сформулировать проблему следующим образом: что появилось ранее — первое животное, откладывающее яйца, или собственно его яйцо, ведь откуда-то должен был вылупиться представитель нового вида.

Главная проблема заключается в установке причинно-следственной связи между явлениями нечёткого объёма. Для более полного понимания этого ознакомьтесь с принципами нечёткой логики — обобщения классической логики и теории множеств.

Говоря упрощённо, дело в том, что животные в ходе эволюции прошли через бесчисленное количество промежуточных этапов — это касается и способов выведения потомства. На различных эволюционных стадиях они откладывали разные объекты, которые нельзя однозначно определить как яйца, но имеющие с ними некоторое сходство.

Вероятно, объективного решения этой проблемы не существует, хотя, например, британский философ Герберт Спенсер предложил такой вариант: «Курица — лишь способ, которым одно яйцо производит другое яйцо».

парадокс, интересное

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

На прочтение этой подборки у вас уйдёт значительно меньше времени, чем на размышления о парадоксах, представленных в ней. Некоторые из проблем противоречивы лишь на первый взгляд, другие даже после сотен лет напряжённого умственного труда над ними величайших математиков, философов и экономистов кажутся неразрешимыми. Кто знает, возможно, именно вам удастся сформулировать решение одной из этих задач, которое станет, что называется, хрестоматийным и войдёт во все учебники.

1. Парадокс ценности

Адам СмитАдам СмитАдам Смит

Феномен, известный также как парадокс алмазов и воды или парадокс Смита (назван в честь Адама Смита — автора классических трудов по экономической теории, который, как считается, первым сформулировал этот парадокс), заключается в том, что хотя вода как ресурс гораздо полезнее кусков кристаллического углерода, называемых нами алмазами, цена последних на международном рынке несоизмеримо выше стоимости воды.

С точки зрения выживания вода действительно нужна человечеству гораздо больше алмазов, однако её запасы, конечно же, больше запасов алмазов, поэтому специалисты говорят, что ничего странного в разнице цен нет — ведь речь идёт о стоимости единицы каждого ресурса, а она во многом определяется таким фактором, как предельная полезность.

При непрерывном акте потребления какого-либо ресурса его предельная полезность и, как следствие, стоимость неизбежно падает — эту закономерность в XIX-м веке открыл прусский экономист Герман Генрих Госсен. Говоря простым языком, если человеку последовательно предложить три стакана воды, первый он выпьет, водой из второго умоется, а третий пойдёт на мытьё пола.

Большая часть человечества не испытывает острой нужды в воде — чтобы получить достаточное её количество, стоит только открыть водопроводный кран, а вот алмазы имеются далеко не у всех, поэтому они столь дороги.

2. Парадокс убитого дедушки

Рене БаржавельРене БаржавельРене Баржавель

Этот парадокс в 1943-м году предложил французский писатель-фантаст Рене Баржавель в своей книге «Неосторожный путешественник» (в оригинале «Le Voyageur Imprudent»).

Предположим, вам удалось изобрести машину времени, и вы отправились на ней в прошлое. Что произойдёт, если вы встретите там своего дедушку и убьёте его до того, как он встретился с вашей бабушкой? Вероятно, не всем понравится этот кровожадный сценарий, поэтому, скажем, вы предотвратите встречу другим путём, например, увезёте его на другой конец света, где он никогда не узнает о её существовании, парадокс от этого не исчезает.

Если встреча не состоится, ваша мать или отец не появится на свет, не сможет зачать вас, а вы соответственно не изобретёте машину времени и не попадёте в прошлое, поэтому дедушка сможет беспрепятственно жениться на бабушке, у них родится один из ваших родителей и так далее — парадокс налицо.

История с убитым в прошлом дедушкой часто приводится учёными как доказательство принципиальной невозможности путешествий во времени, однако некоторые специалисты говорят, что при определённых условиях парадокс вполне разрешим. Например, убив своего дедушку, путешественник во времени создаст альтернативную версию реальности, в которой он никогда не будет рождён.

Кроме того, многие высказывают предположения, что даже попав в прошлое, человек не сможет на него повлиять, так как это приведёт к изменению будущего, частью которого он является. Например, попытка убийства дедушки заведомо обречена на провал — ведь если внук существует, значит, его дед, так или иначе, пережил покушение.

3. Корабль Тесея

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

Название парадоксу дал один из греческих мифов, описывающий подвиги легендарного Тесея, одного из афинских царей. Согласно легенде, афиняне несколько сотен лет хранили корабль, на котором Тесей вернулся в Афины с острова Крит. Конечно, судно постепенно ветшало, и плотники заменяли прогнившие доски на новые, в результате чего в нём не осталось ни кусочка старой древесины. Лучшие умы мира, в числе которых видные философы вроде Томаса Гоббса и Джона Локка веками размышляли над тем, можно ли считать, что именно на этом судне когда-то путешествовал Тесей.

Таким образом, суть парадокса в следующем: если заменить все части объекта на новые, может ли он быть тем же самым объектом? Кроме того, возникает вопрос — если из старых частей собрать точно такой же объект, какой из двух будет «тем самым»? Представители разных философских школ давали прямо противоположные ответы на эти вопросы, но некоторые противоречия в возможных решениях парадокса Тесея до сих пор существуют.

Кстати, если учесть, что клетки нашего организма практически полностью обновляются каждые семь лет, можно ли считать, что в зеркале мы видим того же человека, что и семь лет назад?

4. Парадокс Галилея

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

Открытый Галилео Галилеем феномен демонстрирует противоречивые свойства бесконечных множеств. Краткая формулировка парадокса такова: натуральных чисел столько же, сколько их квадратов, то есть, количество элементов бесконечного множества 1, 2, 3, 4… равно количеству элементов бесконечного множества 1, 4, 9, 16…

На первый взгляд, никакого противоречия здесь нет, однако тот же Галилей в своей работе «Две науки» утверждает: некоторые числа являются точными квадратами (то есть из них можно извлечь целый квадратный корень), а другие нет, поэтому точных квадратов вместе с обычными числами должно быть больше, чем одних точных квадратов. Между тем, ранее в «Науках» встречается постулат о том, что квадратов натуральных чисел столько же, сколько самих натуральных чисел и эти два утверждения прямо противоположны друг другу.

Сам Галилей считал, что парадокс можно решить только применительно к конечным множествам, однако Георг Кантор, один из немецких математиков XIX-го века, разработал свою теорию множеств, согласно которой второй постулат Галилея (об одинаковом количестве элементов) верен и для бесконечных множеств. Для этого Кантор ввёл понятие мощности множества, которые при расчётах для обоих бесконечных множеств совпали.

5. Парадокс бережливости

Уильям ФостерУильям ФостерУильям Фостер

Самая известная формулировка любопытного экономического явления, описанного Уоддилом Кетчингсом и Уильямом Фостером выглядит следующим образом: «Чем больше мы откладываем на чёрный день, тем быстрее он наступит». Чтобы понять суть противоречия, заключённого в этом феномене, немного экономической теории.

Если во время экономического спада большая часть населения начинает экономить свои сбережения, снижается совокупный спрос на товары, что в свою очередь приводит к уменьшению заработка и как следствие — падению общего уровня экономии и сокращению сбережений. Попросту говоря, возникает своего рода замкнутый круг, когда потребители тратят меньше денег, но тем самым ухудшают своё благосостояние.

В некотором роде парадокс бережливости аналогичен проблеме из теории игр под названием дилемма заключённого: действия, которые выгодны каждому участнику ситуации по отдельности, вредны для них в целом.

6. Парадокс Пиноккио

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

Является разновидностью философской проблемы, известной как парадокс лжеца. Этот парадокс прост по форме, но отнюдь не по содержанию. Его можно выразить в трёх словах: «Это утверждение — ложь», или даже в двух — «Я лгу». В варианте с Пиноккио проблема сформулирована так: «Мой нос сейчас растёт».

Думаю, вам понятно противоречие, содержащееся в этом утверждении, но на всякий случай, расставим все точки над ё: если фраза верна, значит, нос действительно растёт, но это означает что в данный момент детище папы Карло лжёт, чего не может быть, так как мы уже выяснили, что утверждение правдиво. Значит, нос расти не должен, но если это не соответствует действительности, высказывание всё-таки истинно, а это в свою очередь свидетельствует, что Пиноккио лжёт… И так далее — цепочку взаимоисключающих причин и следствий можно продолжать до бесконечности.

Парадокс лжеца показывает противоречие высказывания в разговорной речи формальной логике. С точки зрения классической логики проблема неразрешима, поэтому утверждение «Я лгу» вообще не считается логическим.

7. Парадокс Рассела

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

Парадокс, который его открыватель, знаменитый британский философ и математик Бертран Рассел называл не иначе, как парадокс брадобрея, строго говоря, можно считать одной из форм парадокса лжеца.

Предположим, проходя мимо парикмахерской, вы увидели на ней рекламное объявление: «Вы бреетесь сами? Если нет, милости просим бриться! Брею всех, кто не бреется сам, и никого другого!». Закономерно задать вопрос: каким образом цирюльник управляется с собственной щетиной, если он бреет только тех, кто не бреется самостоятельно? Если же он сам не бреет собственную бороду, это противоречит его хвастливому утверждению: «Брею всех, кто не бреется сам».

Конечно, легче всего предположить, что недалёкий брадобрей просто не подумал о противоречии, содержащемся в его вывеске и забыть об этой проблеме, но попытаться понять её суть гораздо интереснее, правда для этого придётся ненадолго окунуться в математическую теорию множеств.

Парадокс Рассела выглядит так: «Пусть K — множество всех множеств, которые не содержат себя в качестве собственного элемента. Содержит ли K само себя в качестве собственного элемента? Если да, это опровергает утверждение, что множества в его составе „не содержат себя в качестве собственного элемента“, если же нет, возникает противоречие с тем, что К является множеством всех множеств, не содержащих себя как собственный элемент, а значит K должно содержать все возможные элементы, включая себя».

Проблема возникает из-за того, что Рассел в рассуждениях использовал понятие «множество всех множеств», которое само по себе довольно противоречиво, и руководствовался при этом законами классической логики, которые применимы далеко не во всех случаях (см. пункт шесть).

Открытие парадокса брадобрея спровоцировало жаркие споры в самых разных научных кругах, которые не утихают до сих пор. Для «спасения» теории множеств математики разработали несколько систем аксиом, но доказательств непротиворечивости этих систем нет и, по мнению некоторых учёных, быть не может.

8. Парадокс дней рождения

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать10 любопытных парадоксов, над которыми вам придётся хорошенько подуматьПетер Густав Дирихл

Суть проблемы заключается в следующем: если существует группа из 23-х или более человек, вероятность того, что у двух из них дни рождения (число и месяц) совпадут, превышает 50%. Для групп от 60-ти человек шанс составляет свыше 99%, но 100% достигает, только если в группе не менее 367-ми человек (с учётом високосных лет). Об этом свидетельствует принцип Дирихле, названный по имени его открывателя, немецкого математика Петера Густава Дирихле.

Строго говоря, с научной точки зрения это утверждение не противоречит логике и поэтому не является парадоксом, зато оно отлично демонстрирует разницу результатов интуитивного подхода и математических расчётов, ведь на первый взгляд для столь небольшой группы вероятность совпадения кажется сильно завышенной.

Если рассматривать каждого члена группы по отдельности, оценивая вероятность совпадения его дня рождения с чьим-либо другим, для каждого человека шанс составит примерно 0,27%, таким образом, общая вероятность для всех членов группы должна быть около 6,3% (23/365). Но это в корне неверно, ведь количество возможных вариантов выбора определённых пар из 23-х человек гораздо выше числа её членов и составляет (23*22)/2=253, исходя из формулы вычисления так называемого числа сочетаний из данного множества. Не будем углубляться в комбинаторику, можете на досуге проверить правильность этих расчётов.

Для 253-х вариантов пар шанс, что месяц и дата рождения участников одной из них окажутся одинаковыми, как вы наверняка догадались, значительно больше 6,3%.

9. Проблема курицы и яйца

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

10 любопытных парадоксов, над которыми вам придётся хорошенько подумать

Наверняка, каждому из вас хотя бы раз в жизни задавали вопрос: «Что появилось раньше — курица или яйцо?». Искушённые в зоологии знают ответ: птицы появлялись на свет из яиц задолго до возникновения среди них отряда куриных. Стоит отметить, что в классической формулировке говорится как раз о птице и яйце, но и она допускает лёгкое решение: ведь, например, динозавры появились раньше птиц, и они тоже размножались, откладывая яйца.

Если учесть все эти тонкости, можно сформулировать проблему следующим образом: что появилось ранее — первое животное, откладывающее яйца, или собственно его яйцо, ведь откуда-то должен был вылупиться представитель нового вида.

Главная проблема заключается в установке причинно-следственной связи между явлениями нечёткого объёма. Для более полного понимания этого ознакомьтесь с принципами нечёткой логики — обобщения классической логики и теории множеств.

Говоря упрощённо, дело в том, что животные в ходе эволюции прошли через бесчисленное количество промежуточных этапов — это касается и способов выведения потомства. На различных эволюционных стадиях они откладывали разные объекты, которые нельзя однозначно определить как яйца, но имеющие с ними некоторое сходство.

Вероятно, объективного решения этой проблемы не существует, хотя, например, британский философ Герберт Спенсер предложил такой вариант: «Курица — лишь способ, которым одно яйцо производит другое яйцо».

10. Исчезновение клетки

В отличие от большинства других парадоксов подборки, эта шутливая «проблема» не содержит в себе противоречия, служит скорее для тренировки наблюдательности и заставляет вспомнить основные законы геометрии.

Если вам знакомы подобные задачи, можете не смотреть видео — в нём содержится её решение. Всем остальным предлагаем не лезть, как говорится, «в конец учебника», а поразмыслить: площади разноцветных фигур абсолютно равны, однако при их перестановке «пропадает» одна из клеток (или становится «лишней» — в зависимости от того, какой вариант расположения фигур рассматривать в качестве первоначального). Как такое может быть?

Подсказка: изначально в задаче присутствует небольшая хитрость, которая и обеспечивает её «парадоксальность», и если вам удастся её найти, всё сразу встанет на свои места, хотя клетка по-прежнему будет «исчезать».

10 занимательных логических парадоксов

Учёные и мыслители с давних времён любят развлекать себя и коллег постановкой неразрешимых задач и формулированием разного рода парадоксов. Некоторые из подобных мысленных экспериментов сохраняют актуальность на протяжении тысяч лет, что свидетельствует о несовершенстве многих популярных научных моделей и «дырах» в общепринятых теориях, давно считающихся фундаментальными. Предлагаем вам поразмыслить над наиболее интересными и удивительными парадоксами, которые, как сейчас выражаются, «взорвали мозг» не одному поколению логиков, философов и математиков.

1. Апория «Ахиллес и черепаха»

Парадокс Ахиллеса и черепахи — одна из апорий (логически верных, но противоречивых высказываний), сформулированных древнегреческим философом Зеноном Элейским в V-м веке до нашей эры. Суть её в следующем: легендарный герой Ахиллес решил посоревноваться в беге с черепахой. Как известно, черепахи не отличаются прыткостью, поэтому Ахиллес дал сопернику фору в 500 м. Когда черепаха преодолевает эту дистанцию, герой пускается в погоню со скоростью в 10 раз большей, то есть пока черепаха ползёт 50 м, Ахиллес успевает пробежать данные ей 500 м форы. Затем бегун преодолевает следующие 50 м, но черепаха в это время отползает ещё на 5 м, кажется, что Ахиллес вот-вот её догонит, однако соперница всё ещё впереди и пока он бежит 5 м, ей удаётся продвинуться ещё на полметра и так далее. Дистанция между ними бесконечно сокращается, но по идее, герою так и не удаётся догнать медлительную черепаху, она ненамного, но всегда опережает его.

© www.student31.ru

Конечно, с точки зрения физики парадокс не имеет смысла — если Ахиллес движется намного быстрее, он в любом случае вырвется вперёд, однако Зенон, в первую очередь, хотел продемонстрировать своими рассуждениями, что идеализированные математические понятия «точка пространства» и «момент времени» не слишком подходят для корректного применения к реальному движению. Апория выявляет расхождение между математически обоснованной идеей, что ненулевые интервалы пространства и времени можно делить бесконечно (поэтому черепаха должна всегда оставаться впереди) и реальностью, в которой герой, конечно, выигрывает гонку.

2. Парадокс временной петли

«Новые путешественники во времени» Дэвида Туми

Парадоксы, описывающие путешествия во времени, давно служат источником вдохновения для писателей-фантастов и создателей научно-фантастических фильмов и сериалов. Существует несколько вариантов парадоксов временной петли, один из самых простых и наглядных примеров подобной проблемы привёл в своей книге «The New Time Travelers» («Новые путешественники во времени») Дэвид Туми, профессор из Университета Массачусетса.

Представьте себе, что путешественник во времени купил в книжном магазине экземпляр шекспировского «Гамлета». Затем он отправился в Англию времён Королевы-девы Елизаветы I и отыскав Уильяма Шекспира, вручил ему книгу. Тот переписал её и издал, как собственное сочинение. Проходят сотни лет, «Гамлета» переводят на десятки языков, бесконечно переиздают, и одна из копий оказывается в том самом книжном магазине, где путешественник во времени покупает её и отдаёт Шекспиру, а тот снимает копию и так далее… Кого в таком случае нужно считать автором бессмертной трагедии?

3. Парадокс девочки и мальчика

Мартин Гарднер / © www.post-gazette.com

В теории вероятностей этот парадокс также называют «Дети мистера Смита» или «Проблемы миссис Смит». Впервые он был сформулирован американским математиком Мартином Гарднером в одном из номеров журнала «Scientific American». Учёные спорят над парадоксом уже несколько десятилетий и существует несколько способов его разрешения. Поразмыслив над проблемой, вы можете предложить и свой собственный вариант.

В семье есть двое детей и точно известно, что один из них — мальчик. Какова вероятность того, что второй ребёнок тоже имеет мужской пол? На первый взгляд, ответ вполне очевиден — 50 на 50, либо он действительно мальчик, либо девочка, шансы должны быть равными. Проблема в том, что для двухдетных семей существует четыре возможных комбинации полов детей — две девочки, два мальчика, старший мальчик и младшая девочка и наоборот — девочка старшего возраста и мальчик младшего. Первую можно исключить, так как один из детей совершенно точно мальчик, но в таком случае остаются три возможных варианта, а не два и вероятность того, что второе чадо тоже мальчик — один шанс из трёх.

4. Парадокс Журдена с карточкой

Проблему, предложенную британским логиком и математиком Филиппом Журденом в начале XX-го века, можно считать одной из разновидностей знаменитого парадокса лжеца.

Филипп Журден

Представьте себе — вы держите в руках открытку, на которой написано: «Утверждение на обратной стороне открытки истинно». Перевернув открытку, вы обнаруживаете фразу «Утверждение на другой стороне ложно». Как вы понимаете, противоречие налицо: если первое утверждение правдиво, то второе тоже соответствует действительности, но в таком случае первое должно оказаться ложным. Если же первая сторона открытки лжива, то фразу на второй также нельзя считать истинной, а это значит, первое утверждение опять-таки становится правдой… Ещё более интересный вариант парадокса лжеца — в следующем пункте.

5. Софизм «Крокодил»

На берегу реки стоят мать с ребёнком, вдруг к ним подплывает крокодил и затаскивает ребёнка в воду. Безутешная мать просит вернуть её чадо, на что крокодил отвечает, что согласен отдать его целым и невредимым, если женщина правильно ответит на его вопрос: «Вернёт ли он её ребёнка?». Понятно, что у женщины два варианта ответа — да или нет. Если она утверждает, что крокодил отдаст ей ребёнка, то всё зависит от животного — посчитав ответ правдой, похититель отпустит ребёнка, если же он скажет, что мать ошиблась, то ребёнка ей не видать, согласно всем правилам договора.

© Коракс Сиракузский

Отрицательный ответ женщины всё значительно усложняет — если он оказывается верным, похититель должен выполнить условия сделки и отпустить дитя, но таким образом ответ матери не будет соответствовать действительности. Чтобы обеспечить лживость такого ответа, крокодилу нужно вернуть ребёнка матери, но это противоречит договору, ведь её ошибка должна оставить чадо у крокодила.

Стоит отметить, что сделка, предложенная крокодилом, содержит логическое противоречие, поэтому его обещание невыполнимо. Автором этого классического софизма считается оратор, мыслитель и политический деятель Коракс Сиракузский, живший в V-м веке до нашей эры.

6. Апория «Дихотомия»

© www.student31.ru

Ещё один парадокс от Зенона Элейского, демонстрирующий некорректность идеализированной математической модели движения. Проблему можно поставить так — скажем, вы задались целью пройти какую-нибудь улицу вашего города от начала и до конца. Для этого вам необходимо преодолеть первую её половину, затем половину оставшейся половины, далее половину следующего отрезка и так далее. Иначе говоря — вы проходите половину всего расстояния, затем четверть, одну восьмую, одну шестнадцатую — количество уменьшающихся отрезков пути стремится к бесконечности, так как любую оставшуюся часть можно разделить надвое, значит пройти весь путь целиком невозможно. Формулируя несколько надуманный на первый взгляд парадокс, Зенон хотел показать, что математические законы противоречат реальности, ведь на самом деле вы можете без труда пройти всё расстояние без остатка.

7. Апория «Летящая стрела»

Знаменитый парадокс Зенона Элейского затрагивает глубочайшие противоречия в представлениях учёных о природе движения и времени. Апория сформулирована так: стрела, выпущенная из лука, остаётся неподвижной, так как в любой момент времени она покоится, не совершая перемещения. Если в каждый момент времени стрела покоится, значит она всегда находится в состоянии покоя и не движется вообще, так как нет момента времени, в который стрела перемещается в пространстве.

© www.academic.ru

Выдающиеся умы человечества веками пытаются разрешить парадокс летящей стрелы, однако с логической точки зрения он составлен абсолютно верно. Для его опровержения требуется объяснить, каким образом конечный временной отрезок может состоять из бесконечного числа моментов времени — доказать это не удалось даже Аристотелю, убедительно критиковавшему апорию Зенона. Аристотель справедливо указывал, что отрезок времени нельзя считать суммой неких неделимых изолированных моментов, однако многие учёные считают, что его подход не отличается глубиной и не опровергает наличие парадокса. Стоит отметить, что постановкой проблемы летящей стрелы Зенон стремился не опровергнуть возможность движения, как таковую, а выявить противоречия в идеалистических математических концепциях.

8. Парадокс Галилея

Галилео Галилей / © Wikimedia

В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилео Галилей предложил парадокс, демонстрирующий любопытные свойства бесконечных множеств. Учёный сформулировал два противоречащих друг другу суждения. Первое: есть числа, представляющие собой квадраты других целых чисел, например 1, 9, 16, 25, 36 и так далее. Существуют и другие числа, у которых нет этого свойства — 2, 3, 5, 6, 7, 8, 10 и тому подобные. Таким образом, общее количество точных квадратов и обычных чисел должно быть больше, чем количество только точных квадратов. Второе суждение: для каждого натурального числа найдётся его точный квадрат, а для каждого квадрата существует целый квадратный корень, то есть, количество квадратов равно количеству натуральных чисел.

На основании этого противоречия Галилей сделал вывод, что рассуждения о количестве элементов применены только к конечным множествам, хотя позже математики ввели понятие, мощности множества — с его помощью была доказана верность второго суждения Галилея и для бесконечных множеств.

9. Парадокс мешка картофеля

© nieidealne-danie.blogspot.com

Допустим, у некоего фермера имеется мешок картофеля весом ровно 100 кг. Изучив его содержимое, фермер обнаруживает, что мешок хранился в сырости — 99% его массы составляет вода и 1% остальные вещества, содержащиеся в картофеле. Он решает немного высушить картофель, чтобы содержание воды в нём снизилось до 98% и переносит мешок в сухое место. На следующий день оказывается, что, один литр (1 кг) воды действительно испарился, но вес мешка уменьшился со 100 до 50 кг, как такое может быть? Давайте посчитаем — 99% от 100 кг это 99 кг, значит соотношение массы сухого остатка и массы воды изначально было равно 1/99. После сушки вода насчитывает 98% от общей массы мешка, значит соотношение массы сухого остатка к массе воды теперь составляет 1/49. Так как масса остатка не изменилась, оставшаяся вода весит 49 кг.

Конечно, внимательный читатель сразу обнаружит грубейшую математическую ошибку в расчётах — мнимый шуточный «парадокс мешка картофеля» можно считать отличным примером того, как с помощью на первый взгляд «логичных» и «научно подкреплённых» рассуждений можно буквально на пустом месте выстроить теорию, противоречащую здравому смыслу.

10. Парадокс воронов

Карл Густав Гемпель / © Wikimedia

Проблема также известна, как парадокс Гемпеля — второе название она получила в честь немецкого математика Карла Густава Гемпеля, автора её классического варианта. Проблема формулируется довольно просто: каждый ворон имеет чёрный цвет. Из этого следует, что всё, что не чёрного цвета, не может быть вороном. Этот закон называется логическая контрапозиция, то есть если некая посылка «А» имеет следствие «Б», то отрицание «Б» равнозначно отрицанию «А». Если человек видит чёрного ворона, это укрепляет его уверенность, что все вороны имеют чёрный окрас, что вполне логично, однако в соответствии с контрапозицией и принципом индукции, закономерно утверждать, что наблюдение предметов не чёрного цвета (скажем, красных яблок) также доказывает, что все вороны окрашены в чёрный цвет. Иными словами — то, что человек живёт в Санкт-Петербурге доказывает, что он живёт не в Москве.

С точки зрения логики парадокс выглядит безукоризненно, однако он противоречит реальной жизни — красные яблоки никоим образом не могут подтверждать тот факт, что все вороны чёрного цвета.

6. Парадоксы теоретического мышления Галилея

Мы не можем найти у Галилея систематически продуманной исследовательской программы именно потому, что почти все его важнейшие понятия содержат в себе противоречие.

Рассмотрим с этой точки зрения исходные понятия галилеевской механики и ее методологические принципы.

Начнем с понятия континуума. Здесь Галилей, как мы видели, утверждает, что континуум состоит из неделимых, природа которых парадоксальна: они сами не имеют величины, но из их бесконечного множества составляется любая конечная величина. Тут одно непонятное — лишенная величины составная часть тела — объясняется через другое непонятное: актуально существующее бесконечное множество. Это понятие-парадокс получает название бесконечно малого и играет важную роль как в механике Галилея, так и в его математике. О том, что Галилей хорошо понимал противоречивый характер своего учения о неделимых (бесконечно малых), свидетельствует тот факт, что когда его ученик Кавальери решил на базе этого понятия создать новую геометрию — геометрию неделимых, не кто иной, как сам Галилей, откровенно говорил ему о сомнительности его исходных принципов. Хотя письмо Галилея к Кавальери и не сохранилось, но по некоторым высказываниям самого Галилея и по ответу Кавальери на письмо Галилея можно судить о том, что именно понятие суммы бесконечно малых Галилей считал теоретически несостоятельным. Вот что пишет Кавальери, в сдержанной форме упрекая самого Галилея в противоречивости его понятия неделимых: «Чтобы не казалось, что я не проявил должного почтения к столь великому учителю, я прошу читателя обратить внимание на то, что Галилей в цитированном выше месте придерживается двух предпосылок: что непрерывное состоит из неделимых (в частности, линия — из точек, бесконечных по числу) и что существует линия, бo льшая, чем другая линия… Итак, он признает, что некоторая совокупность бесконечного числа членов может быть больше другой, что не противоречит, но благоприятствует моей точке зрения». Упрек Кавальери Галилею вполне резонен: ведь возражая Кавальери, считавшему, что одно бесконечное может быть больше другого, Галилей писал, что одно бесконечное не может быть больше, меньше или равно другому бесконечному, ибо между ними не существует отношения.

Отсюда видно, что сам Галилей не пришел к определенному и однозначному решению этого вопроса. В этом пункте нельзя не согласиться с выводом С. Я. Лурье, подробно изучавшего диалог Кавальери и Галилея: «…Галилей вообще не выставил никакой связной математической теории неделимых: стоя на атомистической точке зрения (непрерывное состоит из неделимых, линия состоит из точек), он в то же время видел логические несообразности, к которым приводила эта теория; компромисс Кавальери его не удовлетворял, он не хотел понять Кавальери, чувствовал, что математический атомизм необходим для дальнейшего прогресса математики, но не знал, как сделать его теоретически приемлемым».

Однако с помощью этого самого противоречивого понятия «неделимого», или «бесконечно малого», Галилей вводит важную категорию механики — «мгновенную скорость», отменяя тем самым принципы аристотелевской теории движения. При обсуждении вопроса о бесконечной медленности, представляющей собой опять-таки совпадение противоположностей — покоя и движения, аристотелик Симпличио возражает против введения этого понятия, указывая на грозящий здесь парадокс Зенона: «Но если степени все большей и большей медленности бесчисленны, то они никогда не могут быть все исчерпаны. Таким образом, подымающийся камень никогда не пришел бы в состояние покоя, но пребывал бы в бесконечном, постоянно замедляющемся движении, чего, однако, в действительности никогда не бывает». На это Галилей — Сальвиати дает ответ, формулируя ключевое понятие своей динамики — понятие мгновенной скорости: «Это случилось бы, синьор Симпличио, если бы тело двигалось с каждой степенью скорости некоторое определенное время; но оно только проходит через эти степени, не задерживаясь больше, чем на мгновение; а так как в каждом, даже в самом малом промежутке времени содержится бесконечное множество мгновений, то их число является достаточным для соответствия бесконечному множеству уменьшающихся степеней скорости». Галилей здесь опять-таки прибегает к понятию суммы бесконечно большого числа бесконечно малых отрезков времени, которым соответствует сумма бесконечно большого числа «мгновенных скоростей». Но что же такое «мгновенная скорость»? Коль скоро мгновение — это бесконечно малая «доля» времени, то, стало быть, само мгновение — это уже не время; мгновение — это не конечный отрезок времени, каким бы малым он ни был; это нечто среднее между вневременностью и временем, точно так же, как бесконечно малый отрезок пространства не есть ни математическая точка, ни как угодно малый отрезок пространства. «Мгновенная скорость» — это уже не скорость в собственном смысле слова, ибо всякая скорость предполагает движение, а движение может происходить только во времени. Значит, мгновенная скорость — это нечто вроде неподвижного начала движения. По Галилею, всякая скорость складывается из бесконечной суммы мгновенных скоростей, и это обращение к бесконечной сумме представляет собой как бы магическое заклинание, с помощью которого совершается прыжок от вневременных мгновений к времени, от внепространственных неделимых к пространству, от «неподвижных составляющих» движения к самому движению — одним словом, «переход в другой род». Средством этого перехода оказывается дифференциал, ибо именно дифференциалом и является «мгновенная скорость» у Галилея.

С помощью понятия «мгновенной скорости» Галилей решает проблему континуума. Средством решения, как видим, и здесь оказывается обращение к парадоксу, которое — заметим — Галилей, хотя и не без колебаний, позволяет себе, но не терпит у других, например у своего ученика Кавальери. Через понятие бесконечно малого, которое, если говорить строго, не есть ни реальность математическая (по крайней мере в смысле традиционной античной математики), ни реальность физическая, Галилей и осуществляет построение физики на основе математики. С какими противоречиями он при этом постоянно сталкивается, мы уже видели. Именно потому, что в понятии бесконечно малого с самого начала заложено противоречие, это противоречие с неизбежностью воспроизводится на каждом следующем этапе развития галилеевской мысли. Этим объясняется, почему Декарт не мог принять многих утверждений Галилея, в частности его тезиса о переходе падающего тела через все степени медленности. В 1639 г. в письме к Мерсенну Декарт замечает: «Следует знать, что бы ни говорили против этого Галилей и некоторые другие, что тела, начинающие падать или двигаться …вовсе не проходят через все степени медленности, а имеют с первого момента определенную скорость, которая затем значительно возрастает».

Лейбниц высказывает в адрес Галилея упрек еще более серьезный, имея в виду уже не частный вопрос: он считает, что Галилей не развязал узел парадоксов континуума, а разрубил его. Этот упрек, несомненно, справедлив. Сам Лейбниц считал проблему континуума главной в натурфилософии и посвятил ее решению не меньше сил, чем в свое время Аристотель.